Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
a) Do hai phân thức bằng nhau , ta có :
( x +2)P( x2 - 22) = ( x - 1)Q( x -2)
=( x + 2)P( x - 2)( x + 2) = ( x - 1)Q( x - 2)
Suy ra : P = x - 1 ; Q = ( x + 2)2
b) Do hai phân thức bằng nhau , ta có :
( x + 2)P(x2 - 2x + 1) = ( x - 2)Q( x2 - 1)
= ( x + 2)P( x - 1)2 = ( x - 2)Q( x - 1)( x + 1)
Suy ra : P = ( x - 2)( x + 1) = x2 - x - 2
Q = ( x + 2)( x - 1) = x2 + x + 2
Bài 2. a) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)
Xét : ( P + Q)S= PS + QS = QR + QS = Q( R + S)
-> \(\dfrac{P+Q}{Q}=\dfrac{R+S}{S}\)
b) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)
Xét : ( S - R)P = PS - PR = QR - PR = R( Q - P)
-> \(\dfrac{R-S}{R}=\dfrac{Q-P}{P}\)
- > \(\dfrac{R}{R-S}=\dfrac{P}{Q-P}\)
Ta có:
\(\dfrac{P}{Q}=\dfrac{R}{S}\Leftrightarrow1+\dfrac{P}{Q}=1+\dfrac{R}{S}\Leftrightarrow\dfrac{Q+P}{Q}=\dfrac{R+S}{S}\)
=> ĐPCM
Bài này lớp 7 thôi mà !
a) Cộng 1 vào 2 vế
b) Nghịch đảo 2 vế,trừ 1 ở 2 vế rồi lại nghịch đảo 2 vế
a) Tớ làm luôn nhé , không chép lại đề đâu
P = \(\left[\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right].\dfrac{x\left(x+6\right)}{2x-6}\)
ĐKXĐ : x # -6 ; x # 6 ; x # 0 ; x # 3 . Khi đó , ta có :
P = \(\left[\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right]\).\(\dfrac{x\left(x+6\right)}{2x-6}\)
P = \(\dfrac{x^2-x^2+12x-36}{x-6}.\dfrac{1}{2x-6}\)
P = \(\dfrac{6\left(2x-6\right)}{x-6}.\dfrac{1}{2x-6}=\dfrac{6}{x-6}\)
b) Tương tự
ta có P/Q = R/S => PS= RQ (1)
P/Q-P = R/S-R => P( S-R) = R(Q-P)
=> PS -PR = RQ-RP
từ (1) => P/Q-P= R/S-R (bn tự kết luận nhé
còn người ta cho Q khác P để Q-P khác 0 vì Q-P là mẫu số và R-S cũng vậy nên S khác R
1/ a, \(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)
\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)
\(=\dfrac{1}{x}\)
Vậy \(A=x\)
b/ Khi \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{2}}=2\)
Vậy...
2/a,
\(A=\dfrac{5x+2}{3x^2+2x}+\dfrac{-2}{3x+2}\)
\(=\dfrac{5x+2}{x\left(3x+2\right)}-\dfrac{2x}{x\left(3x+2\right)}\)
\(=\dfrac{5x+2-2x}{x\left(3x+2\right)}\)
\(=\dfrac{3x+2}{x\left(3x+2\right)}\)
\(=\dfrac{1}{x}\)
Vậy....
b/ Với \(x=\dfrac{1}{3}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{3}}=3\)
Vậy..
a)\(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)
\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)
\(A=\dfrac{a^3+b^3+c^3}{abc}\)
\(A=\dfrac{3abc}{abc}=3\)(vì a+b+c=0)
b)Ta có: a+b+c=0
\(\Rightarrow\left\{{}\begin{matrix}a=-b-c\\b=-c-a\\c=-a-b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2=\left(b+c\right)^2\\b^2=\left(c+a\right)^2\\c^2=\left(a+b\right)^2\end{matrix}\right.\)
\(\Rightarrow B=\dfrac{a^2}{\left(b+c\right)^2-b^2-c^2}+\dfrac{b^2}{\left(a+c\right)^2-c^2-a^2}+\dfrac{c^2}{\left(a+b\right)^2-a^2-b^2}\)
\(\Rightarrow B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2ab}\)
\(\Rightarrow B=\dfrac{a^3+b^3+c^3}{2abc}\)
\(\Rightarrow B=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)(vì a+b+c=0)
cm:nếu a+b+c=0 thì a^3+b^3+c^3=3abc
a^3+b^3+c^3=3abc
=>a^3+b^3+c^3-3abc=0
=>(a+b)^3-3ab(a+b)+c^3-3abc=0
=>[(a+b)^3+c^3]-3ab(a+b+c)=0
=>(a+b+c)[(a+b)^2-(a+b)c+c^2] -3ab(a+b+c)=0
=>(a+b+c)[(a+b)^2-(a+b)c+c^2-3ab]=0
vì a+b+c=0 nên a^3+b^3+c^3=3abc
thay kết quả vừa chúng minh vào đề bài ta đc
\(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)
chúc bạn học tốt ^ ^
a)
\(\dfrac{P}{Q}=\dfrac{R}{S}\Rightarrow PS=QR\)
\(\Leftrightarrow PS+QS=QR+QS\)
\(\Leftrightarrow S\left(P+Q\right)=Q\left(R+S\right)\)
điều kiện Q,s khác 0 => chia hau vế cho QS
\(\Leftrightarrow\dfrac{S\left(P+Q\right)}{QS}=\dfrac{Q\left(R+S\right)}{QS}\Leftrightarrow\dfrac{\left(P+Q\right)}{Q}=\dfrac{\left(R+S\right)}{S}\) đpcm