Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔOBC cân tại O nên \(\widehat{BOC}=180^0-2\cdot\widehat{OBC}\)
ΔBO'D cân tại O' nên \(\widehat{BO'D}=180^0-2\cdot\widehat{O'BD}\)
mà \(\widehat{OBC}=\widehat{O'BD}\)
nên \(\widehat{BOC}=\widehat{BO'D}\)

vì C, B cùng thuộc đường tròn (O) => OB=OC => tam giác OBC cân tại O => góc OCB= góc OBC (1)
tương tự góc O'BD= góc O'DB (2)
vì BD là tia pg của góc OBO' => góc OBC= góc DBO' (3)
từ (1) , (2) , (3)=> góc OBC=OCB=O'DB=O'BD
=> góc BOC = góc DO'B

Bài 2:
a: Xét (O) có
CM,CA là tiếp tuyến
nên OC là phân giác của góc MOA(1) và CM=CA
Xet (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
b:
Xét ΔCOD vuông tại O có OM là đường cao
nên MC*MD=OM^2
c: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)

a: ΔOBC cân tại O
mà OM là đường trung tuyến
nên OM⊥BC tại M
M là trung điểm của BC
=>\(MB=MC=\frac{BC}{2}=\frac{R\sqrt3}{2}\)
Xét ΔOMB vuông tại M có \(cosOBM=\frac{BM}{OB}=\frac{R\sqrt3}{2}:R=\frac{\sqrt3}{2}\)
nên \(\hat{OBM}=30^0\)
ΔOBC cân tại O
=>\(\hat{BOC}=180^0-2\cdot\hat{OBC}=180^0-2\cdot30^0=120^0\)
b: N đối xứng O qua BC
=>BC là đường trung trực của ON
=>BC⊥ON tại trung điểm của ON
mà BC⊥OM
và ON và OM có điểm chung là O
nên O,M,N thẳng hàng
=>BC cắt ON tại M
=>M lả trung điểm của ON
ΔCOM vuông tại M
=>\(\hat{COM}+\hat{MCO}=90^0\)
=>\(\hat{COM}=90^0-30^0=60^0\)
Xét tứ giác BOCN có
M là trung điểm chung của CB và ON
=>BOCN là hình bình hành
Hình bình hành BOCN có OB=OC
nên BOCN là hình thoi
=>OC=CN
Xét ΔONC có OC=CN và \(\hat{NOC}=60^0\)
nên ΔONC đều
=>ON=OC
=>N cũng thuộc (O)
c: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CD⊥CA
mà BH⊥CA
nên BH//CD
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD⊥BA
mà CH⊥BA
nên CH//BD
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
d: Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH⊥BC
mà OM⊥BC
nên OM//AH
BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
Xét ΔHAD có
O,M lần lượt là trung điểm của DA,DH
=>OM là đường trung bình của ΔHAD
=>\(OM=\frac12AH\)
e:
Xét (O) có \(\hat{BAC}\) là góc nội tiếp chắn cung BC
nên \(\hat{BAC}=\frac12\cdot\hat{BOC}=\frac12\cdot120^0=60^0\)
ABDC nội tiếp
=>\(\hat{BAC}+\hat{BDC}=180^0\)
=>\(\hat{BDC}=180^0-60^0=120^0\)
Ta có: BHCD là tứ giác nội tiếp
=>\(\hat{BHC}=\hat{BDC}\)
=>\(\hat{BHC}=120^0\)
Xét tứ giác BHOC có \(\hat{BHC}=\hat{BOC}\left(=120^0\right)\)
nên BHOC là tứ giác nội tiếp
=>B,H,O,C cùng thuộc một đường tròn