Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) OB=OC (=R) VÀ AB=AC(/c 2 tt cắt nhau)\(\Rightarrow\)OA LÀ ĐƯỜNG TRUNG TRỤC CỦA BC. b) \(BD\perp AB\)(t/c tt) và BE \(\perp AC\)(A \(\varepsilon\left(O\right)\)đường kính BC ). Aps dụng hệ thúc lượng ta có AE*AC=AB\(^2\)=AC\(^2\).
c) c/m OD\(^2=OB^2=OH\cdot OA\)và OH*OA=OK*OF ( \(\Delta OAK\omega\Delta OFH\left(g-g\right)\))\(\Rightarrow\frac{OD}{OF}=\frac{OK}{OD}\)mà góc FOD chung\(\Rightarrow\Delta OKD\omega\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{ODF}=\widehat{OKD}=90\Rightarrow OD\perp DF\Rightarrowđpcm\)
A B C N D F I K O
a) +) Ta có: IB, IK là 2 tiếp tuyến kẻ từ I
=> IO là tia phân giác \(\widehat{BIK}\)=->\(\widehat{BIO}=\frac{1}{2}\widehat{KIB}\)(1)
Tương tự: \(\widehat{IBO}=\frac{1}{2}\widehat{IBC}\)(2)
+) ND cùng vuông góc với IK và BC
=> IK//BC
=> \(\widehat{KIB}+\widehat{IBC}=180^o\)(3)
Từ (1), (2), (3)
=> \(\widehat{IBO}+\widehat{BIO}=90^o\)=> \(\widehat{IBO}=90^o\)
+) Xét 2 tam giác vuông INO và ODB có:
\(\widehat{ION}=\widehat{OBD}\)( cùng phụ với góc BOD)
=> \(\Delta INO~\Delta ODB\)
=> \(\frac{IN}{OD}=\frac{ON}{BD}\)=> \(IN.BD=R^2\)( với R là bán kính đường tròn (O)) (4)
Tương tự ta cũng chứng minh được: \(NK.DC=R^2\)(5)
(4), (5)=> \(IN.BD=NK.DC\Rightarrow\frac{IN}{NK}=\frac{DC}{BD}\)(6)
b) IK//BC. Theo định lí Thaslet ta có:
\(\frac{IN}{BE}=\frac{NK}{EC}\left(=\frac{AN}{AE}\right)\Rightarrow\frac{IN}{NK}=\frac{BE}{EC}\)(7)
(6),(7)=> \(\frac{DC}{DB}=\frac{BE}{EC}\Rightarrow\frac{BC-BD}{DB}=\frac{BC-EC}{CE}\Rightarrow\frac{BC}{BD}-1=\frac{BC}{CE}-1\Rightarrow\frac{BC}{BD}=\frac{BC}{CE}\Rightarrow BD=CE\)