K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

O A B C M a) có OA = OB (=R)

=> O thuộc đường trung trực của AB

=> M là trung điểm của AB

=> MA = MB

(O) nhỏ có AB là tiếp tuyến tại M (gt)

=> AB \(\perp OM\) tại M ( t/c tiếp tuyến)

xét \(\Delta MAC\) vuông tại M (AB vuông OM cmt)

\(\Delta MBC\) vuông tại M ('' '' '')

có MA = MB ( cmt)

MC chung

=> \(\Delta MAC=\Delta MBC\) (2cgv)

=> AC = CB ( 2 cạnh t/ư)

(O) lớn có dây AC = dây CB (cmt)

=>\(\stackrel\frown{AC}=\stackrel\frown{CB}\) ( 2 dây = nhau căng 2 cung = nhau)

b)

\(\Delta OAMvuôngtạiM\) (OM vuông AB)

=> \(OA^2=OM^2+MA^2\) (định lí pytago)

=> \(R^2=\left(\dfrac{R\sqrt{3}}{2}\right)^2+MA^2\)

=> MA = \(\dfrac{1}{2}R\)

có AB = MA + MB (vì M thuộc AB)

hay AB = 2 . MA (vì M A= MB cmt)

= 2.\(\dfrac{1}{2}R\)

=R

=> AB = OA = OB (VÌ OA=OB =R)

=>\(\Delta OAB\) đều

=> \(\widehat{OAB}=60^0\)

=> \(\stackrel\frown{AB}=60^0\)

26 tháng 3 2018

a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.

Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:

\(BC.BM=AB^2=4R^2\)

b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA

Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)

\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)

Hay IC là tiếp tuyến tại C của nửa đường tròn.

c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:

\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)

Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.

Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\)   (1) 

Xét tam giác vuông MAB, theo Pi-ta-go ta có:

\(MB^2=MA^2+AB^2=MA^2+4R^2\)   (2)

Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)

d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)

Tương tự \(\widehat{CEO}=90^o\)

Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.

Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.

Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.

Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.

Vậy  đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.

31 tháng 7 2016

vẽ hình đi

1 tháng 8 2016

undefined

10 giờ trước (20:22)

Ok

26 tháng 9 2017

không biết