K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

Để hai đường thẳng vuông góc :

\(\Leftrightarrow m\left(4m-5\right)=-1\Leftrightarrow4m^2-5m+1=0\Rightarrow\orbr{\begin{cases}m=1\\m=\frac{1}{4}\end{cases}}\)

b ) Gọi điểm cố định mà \(d_2\) đi qua là M \(\left(x_0;y_0\right)\)

\(\Rightarrow y_0=\left(4m-5\right)x_0+3m\forall m\)

\(\Leftrightarrow m\left(4x_0+3\right)-\left(5x_0+y_0\right)=0\)

\(\Rightarrow\hept{\begin{cases}4x_0+3=0\\5x_0+y_0=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=-\frac{3}{4}\\y_0=\frac{15}{4}\end{cases}\Rightarrow}M\left(-\frac{3}{4};\frac{15}{4}\right)}\)

30 tháng 9 2018

c) Giả sử đường thẳng  d 1  luôn đi qua một điểm cố định ( x 1 ; y 1  ) với mọi giá trị của m.

⇒  y 1 = m x 1  + 2m - 1 với mọi m

⇔ m( x 1  + 2) - 1 -  y 1 = 0 với mọi m

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy điểm cố định mà d 1  luôn đi qua với mọi giá trị của m là (-2; -1).

b: y=mx-2x+3

Điểm mà (d) luôn đi qua có tọa độ là:

x=0 và y=-2*0+3=3

5 tháng 6 2021

Câu 1 : 

Để (d1) // (d2) : 

m - 1 = -2 

=> m = -1

5 tháng 6 2021

bạn ơi cho mình hỏi: làm sao để có GP vậy ạ, và GP là gì ạ

7 tháng 6 2021

1. Vì \((d_1)\parallel (d_2)\) \(\Rightarrow\left\{{}\begin{matrix}m-1=-2\\m-2\ne3\end{matrix}\right.\Rightarrow m=-1\)

2.a) (P) đi qua \(M\left(1;2\right)\Rightarrow2=a\Rightarrow y=2x^2\)

bạn tự vẽ nha

b) Gọi pt đường thẳng AB là \(y=ax+b\)

\(\Rightarrow\left\{{}\begin{matrix}3=2a+b\\0=-a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3=2a+b\left(1\right)\\0=-2a+2b\left(2\right)\end{matrix}\right.\)

Lấy \(\left(1\right)+\left(2\right)\Rightarrow3b=3\Rightarrow b=1\Rightarrow a=1\Rightarrow y=x+1\)

pt hoành độ giao điểm \(2x^2-x-1=0\Rightarrow\left(x-1\right)\left(2x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=2\\y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\) tọa độ của 2 giao điểm là \(\left(1,2\right)\)\(\left(-\dfrac{1}{2},\dfrac{1}{2}\right)\)

 

a: Để d1//d2 thì \(\left\{{}\begin{matrix}3m^2+1-4m=0\\-m-5< >m^2-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(3m-1\right)\left(m-1\right)=0\\m^2-9+m+5< >0\end{matrix}\right.\)

=>m=1/3 hoặc m=1

b: Để hai đường cắt nhau thì (3m-1)(m-1)<>0

hay \(m\notin\left\{\dfrac{1}{3};1\right\}\)

Cho ba đường thẳng d1: y = 2x + 8; d2: y = mx – 2m + 3; d3: y = x + 2.1. Tìm m để d2 đi qua điểm E(1 ; 3).2. Tìm m để d2 vuông góc với đường phân giác góc phần tư thứ hai.3. Tìm m để ba đường thẳng trên đồng quy.4. Tìm điểm cố định mà d2 luôn đi qua với mọi m. Từ đó tìm m để khoảng cách từ gốc O đến d2 là lớnnhất.5. Gọi d3 cắt 0x, 0y lần lượt tại A và B. Tìm A và B sau đó tính diện tích...
Đọc tiếp

Cho ba đường thẳng d1: y = 2x + 8; d2: y = mx – 2m + 3; d3: y = x + 2.
1. Tìm m để d2 đi qua điểm E(1 ; 3).
2. Tìm m để d2 vuông góc với đường phân giác góc phần tư thứ hai.
3. Tìm m để ba đường thẳng trên đồng quy.
4. Tìm điểm cố định mà d2 luôn đi qua với mọi m. Từ đó tìm m để khoảng cách từ gốc O đến d2 là lớn
nhất.
5. Gọi d3 cắt 0x, 0y lần lượt tại A và B. Tìm A và B sau đó tính diện tích tam giác OAB theo hệ thức
lượng.
6. Lập phương trình đường thẳng d đi qua điểm M(3 ; 8) và song song với d3, cắt hai trục tọa độ tại C và
D. Tính độ dài đường cao của tam giác COD, từ đó suy ra khoảng cách từ điểm M đến d3.
7. Lập phương trình đường thẳng d’ qua M và vuông góc với d3. Tìm hình chiếu N của M trên d3, từ đó
tính khoảng cách từ M đến d3

1

1:Thay x=1 và y=3 vào (d2), ta được:

\(m-2m+3=3\)

hay m=0