Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
1: ĐKXĐ: 4x+1>=0 và 9-x<>0
=>x>=-1/4 và x<>9
2: ĐKXĐ: 4x+7>0 hoặc 7-x>0
=>x>-7/4 hoặc x<7
3: ĐKXĐ: 6x+7/3-x>=0
=>(6x+7)/(x-3)<=0
=>-7/6<=x<3
4: ĐKXĐ: (3-x)(3+x)>0
=>-3<x<3
Ko bạn, c âm hay dương ko ảnh hưởng gì hết nên đâu cần loại
Julian Edward
Đường tròn tâm \(I\left(0;-2\right)\) bán kính \(R=4\)
Áp dụng định lý Pitago:
\(d\left(I;\Delta\right)=\sqrt{R^2-\left(\frac{2\sqrt{7}}{2}\right)^2}=3\)
\(\Delta\) song song d nên pt \(\Delta\) có dạng: \(3x-4y+c=0\)
Áp dụng công thức khoảng cách:
\(d\left(I;\Delta\right)=\frac{\left|3.0-4.\left(-2\right)+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=3\)
\(\Leftrightarrow\left|c+8\right|=15\Rightarrow\left[{}\begin{matrix}c=7\\c=-23\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x-4y+7=0\\3x-4y-23=0\end{matrix}\right.\)
TH1: \(\Delta\) cắt Ox và Oy lần lượt tại \(A\left(0;\frac{7}{4}\right);B\left(-\frac{7}{3};0\right)\)
\(\Rightarrow S_{OAB}=\frac{1}{2}.\left|\frac{7}{4}\right|.\left|-\frac{7}{3}\right|=\frac{49}{24}\)
Th2: \(\Delta\) cắt Ox và Oy lần lượt tại \(A\left(0;-\frac{23}{4}\right);B\left(\frac{23}{3};0\right)\)
\(\Rightarrow S_{OAB}=\frac{1}{2}\left|-\frac{23}{4}\right|.\left|\frac{23}{3}\right|=\frac{529}{24}\)
Hai đường thẳng có 2 vtpt lần lượt là \(\left(m-1;-1\right)\) và \(\left(2m;-1\right)\)
Để hai đường thẳng song song nhau
\(\Rightarrow-1\left(m-1\right)=-1.2m\Leftrightarrow m-1=2m\Rightarrow m=-1\)
Vậy đáp án B là đáp án đúng
Lời giải:
Hai đường thẳng trên song song với nhau khi mà\(\left\{\begin{matrix} m\neq 0\\ \frac{m}{1}=\frac{1}{m}\\ m+1\neq 2\end{matrix}\right.\Leftrightarrow m=-1\)
Câu 1:
Đường tròn (C) tâm \(I\left(1;2\right)\) bán kính \(R=2\)
\(\overrightarrow{IM}=\left(2;2\right)=2\left(1;1\right)\)
Do AB luôn vuông góc AM nên đường thẳng AB nhận (1;1) là 1 vtpt
Phương trình AB có dạng: \(x+y+c=0\)
Theo công thức diện tích tam giác:
\(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}=\frac{1}{2}R^2sin\widehat{AIB}\le\frac{1}{2}R^2\)
\(\Rightarrow S_{max}=\frac{1}{2}R^2\) khi \(\widehat{AIB}=90^0\)
\(\Rightarrow d\left(I;AB\right)=\frac{R}{\sqrt{2}}=\sqrt{2}\)
\(\Rightarrow\frac{\left|1+2+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Leftrightarrow\left|c+3\right|=2\Rightarrow\left[{}\begin{matrix}c=-1\\c=-5\end{matrix}\right.\)
Có 2 đường thẳng AB thỏa mãn: \(\left[{}\begin{matrix}x+y-1=0\\x+y-5=0\end{matrix}\right.\)
TH1: \(x+y-1=0\Rightarrow y=1-x\)
Thay vào pt đường tròn: \(x^2+\left(1-x\right)^2-2x-4\left(1-x\right)+1=0\)
Giải ra tọa độ A hoặc B (1 cái là đủ) rồi tính được AM
TH2: tương tự.
Bạn tự làm nốt phần còn lại nhé
Đây là đề bài 1 chính thức nha bạn!
Trong Oxy, cho (C1): \(x^2+y^2-2x-4y+1=0\), M (3; 4)
a) Tìm tọa độ tâm I và tính bán kính R của (C1).
b) Viết phương trình tiếp tuyến d1 với đường tròn (C1) tại giao điểm của\(\Delta_1:x-2y+5=0,\Delta_2:3x+y+1=0\)
c) Viết phương trình tiếp tuyến d2 với đường tròn (C1) biết d2 song song với d: \(4x+3y+2020=0\)
d) Viết phương trình đường tròn (C2) có tâm M, cắt đường tròn (C1) tại hai điểm A, B sao cho \(S_{\Delta IAB}\)lớn nhất.
Ta có: 3 + 1 5 ≠ 3 − 2 4 − 2
Do đó, hai đường thẳng đã cho cắt nhau.
Chú ý. Ta có thể kiểm tra hai đường thẳng đã cho không vuông góc.
ĐÁP ÁN C