K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

Chọn đáp án C

Lấy điểm M trên a, qua M kẻ đường thẳng b' song song với b. Khi đó mặt phẳng (a;b') song song với b.

 

Nếu có một mặt phẳng (P) khác (a;b') chứa a mà song song với b khi đó P ∩ a ; b ' = a  phải song song với b. Mâu thuẩn a, b chéo nhau. Vậy có duy nhất một mặt phẳng chứa a và song song với b

20 tháng 2 2019

6 tháng 6 2018

Đáp án D

Chỉ có duy nhất cặp mặt phẳng như vậy.

23 tháng 10 2018

Đáp án D

Chỉ có duy nhất cặp mặt phẳng như vậy

26 tháng 5 2017

Đáp án D

a và b chéo nhau. Có duy nhất một mặt phẳng chứa a và song song với b vì có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau.

1 tháng 7 2015

a) (P) có vec tơ pháp tuyến là \(\overrightarrow{n_1}\left(1;1;1\right)\)

\(\overrightarrow{AB}\left(1;-1;-1\right)\)

Vì (Q) vuông góc với mp (P) và chứa A; B  nên  véc tơ pháp tuyến của (Q) là \(\overrightarrow{n_2}\) vuông góc với cả \(\overrightarrow{n_1}\left(1;1;1\right)\) và \(\overrightarrow{AB}\left(1;-1;-1\right)\)

=> \(\overrightarrow{n_2}\) = \(\left[\overrightarrow{n_1};\overrightarrow{AB}\right]\) = (0; 2; -2)

mp(Q) đi qua A (-1;2;2) và có vec tơ pt là \(\overrightarrow{n_2}\) có phương trình là: 0.(x +1) + 2(y - 2) -2.(z - 2)  = 0  <=> 2y - 2z = 0 <=> y - z = 0

b) đường thẳng AB có vec tơ chỉ phương là \(\overrightarrow{AB}\left(1;-1;-1\right)\) và đi qua B(0;1;1) có phương trình tham số là:

\(\begin{cases}x=t\\y=1-t\\z=1-t\end{cases}\left(t\in R\right)\)

H = AB giao với (P)

H thuộc AB => H (a; 1-a; 1 - a) 

H thuộc mp(P) => a + 1- a+ 1 - a = 0 => 2 - a = 0 => a = 2

Vậy H (2; -1; -1)

17 tháng 9 2016

GAQnbehws

24 tháng 1 2016

bài 1

\(A+B=a+b-5-b-c+1=a-c-4\)

 

\(A+B+C+D=a-c-4+b-c-4+b-a=2b-2c\)

 

\(A-B+C-D=a+b-5+b+c-1+b-c-4+a-b\)

\(A-B+C-D=2a+2b-10\)

 

\(A+B=a-c-4\)

\(C-D=b-c-4-b+a=a-c-4\)

\(A+B=C-D\)

24 tháng 1 2016

Bài 2

\(M>N\)

\(M-N>0\)

\(a+b-1+b+c-1=a+c-2>0\)

\(a+c>2\)

18 tháng 11 2019

25 tháng 10 2017

4 tháng 2 2016

Hỏi đáp Toán