Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Lực điện tương tác giữa hai điện tích là
Fđ = \(9.10^9.\dfrac{\left|-10^{-7}.5.10^{-8}\right|}{0.05^2}=0.018\left(N\right)\)
b, Ta có AC2 + BC2 = AB2 (32 + 42 = 52) nên theo định lí đảo của định lí Pitago ta có tam giác vuông ABC tại C
Lực điện tổng hợp bằng 1 nửa lực điện ở câu A (vẽ hình là thấy)
độ lớn bằng 0.009 N
c, Mình chưa học, nhưng chắc chỉ cần dùng ct là xong
a, ta thấy AM+BM=AB
\(F_1=k.\dfrac{\left|q_1q_0\right|}{AM^2}=3,75\left(N\right)\)
\(F_2=k\dfrac{\left|q_2q_0\right|}{BM^2}=5,625\left(N\right)\)
\(\Rightarrow F=\left|F_1-F_2\right|=1,875\left(N\right)\)
b, để ý thấy \(AB^2=AN^2+BN^2\)
\(\Rightarrow F_1\perp F_2\)
\(F_1=k.\dfrac{\left|q_1q_0\right|}{AN^2}=3,75\left(N\right)\)
\(F_2=k.\dfrac{\left|q_2q_0\right|}{BN^2}=1,40625\left(N\right)\)
\(\Rightarrow F=\sqrt{F_1^2+F_2^2}\approx4\left(N\right)\)
c, ta thấy AI=BI=AB=1m
vecto lực tương tác là tam giác đêu \(\alpha=60^o\)
\(F_1=k\dfrac{\left|q_1q_0\right|}{AI^2}=1,35\left(N\right)\)
\(F_2=k.\dfrac{\left|q_2q_0\right|}{BI^2}=0,9\left(N\right)\)
\(\Rightarrow F=\sqrt{F_1^2+F_2^2+2F_1F_2cos\alpha}=...\)
a/ \(F_{12}=\frac{k\left|q_1q_2\right|}{r^2}=...\left(N\right)\)
b/ Sau khi cho tiep xuc: \(q_1'=q_2'=\frac{q_1+q_2}{2}=...\)
\(\Rightarrow F_{12}'=\frac{kq_1'^2}{r^2}=\frac{k\left(\frac{q_1+q_2}{2}\right)^2}{r^2}=...\left(N\right)\)
ê bạn ơi điện tích q1,q2,q3 bằng bnhiu