K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

a. Sắp xếp theo lũy thừa giảm dần của biến:

\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\)

b. P(x) - Q(x)=\(\left(5x^5-4x^4-2x^3+4x^2+3x+6\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\right)\)

=\(5x^5-4x^4-2x^3+4x^2+3x+6+x^5-2x^4+2x^3-3x^2+x-\dfrac{1}{4}\)

=\(\left(5x^5+x^5\right)+\left(-4x^4-2x^4\right)+\left(-2x^3+2x^3\right)+\left(4x^2-3x^2\right)+\left(3x+x\right)+\left(6-\dfrac{1}{4}\right)\)

=\(6x^5-6x^4+x^2+4x+\dfrac{23}{4}\)

c.Ta có:\(P\left(-1\right)=5.\left(-1\right)^5-4.\left(-1\right)^4-2.\left(-1\right)^3+4.\left(-1\right)^2+3.\left(-1\right)+6\)

= -5 -4 +2 +4 -3 +6

= 0

\(Q\left(x\right)=-\left(-1\right)^5+2.\left(-1\right)^4-2.\left(-1\right)^3+3.\left(-1\right)^2-\left(-1\right)+\dfrac{1}{4}\)

= 1 + 2 +2 +3 +1 +\(\dfrac{1}{4}\)

= \(\dfrac{37}{4}\ne0\)

Vậy x=-1 là nghiệm của đa thức P(x) nhưng k là nghiệm của đa thức Q(x)

15 tháng 5 2016

\(P\left(x\right)=-4x^4+3x^3+4x^2+3x+6\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=-x^5-2x^4+x^3+7x^2+2x+\frac{25}{4}\)

\(P\left(x\right)-Q\left(x\right)=x^5-6x^4+5x^3+x^2+4x+\frac{23}{4}\)

15 tháng 5 2016

P(x) = -4x^4 + (5x^3 - 2x^3) + 4x^2 + 3x + 6

       = -4x^4 + 3x^3 + 4x^2 + 3x + 6

Q(x) = -x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4

P(x) + Q(x) = (-4x^4 + 3x^3 + 4x^2 + 3x + 6) + (-x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4)

                   = -4x^4 + 3x^3 + 4x^2 + 3x + 6 - x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4

                   = -x^5 - (4x^4 - 2x^4) + (3x^3 - 2x^3) + (4x^2 + 3x^2) + (3x - x) + (6 + 1/4)

                   = -x^5 - 2x^4 + x^3 + 7x^2 + 2x + 25/4

P(x) - Q(x) = (-4x^4 + 3x^3 + 4x^2 + 3x + 6) - (-x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4)

                  = -4x^4 + 3x^3 + 4x^2 + 3x + 6 + x^5 - 2x^4 + 2x^3 - 3x^2 + x - 1/4

                  = x^5 - (4x^4 + 2x^4) + (3x^3 + 2x^3) + (4x^2 - 3x^2) + (3x + x) + (6 - 1/4)

                  = x^5 - 6x^4 + 5x^3 + x^2 + 4x + 23/4

Chúc bạn học tốtok

5 tháng 5 2019

\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+16\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

b

\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+16\)

\(-\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=6x^5-6x^4+x^2+4x+\frac{63}{4}\)

c.

Thay x=-1 vào P(x) thấy đúng còn Q(x) thấy nó khác 0

d

\(P\left(x\right)-Q\left(x\right)=6\cdot\left(-1\right)^5-6\cdot\left(-1\right)^4+\left(-1\right)^2+4\left(-1\right)+\frac{63}{4}\)

\(=-6-6+1-4+\frac{63}{4}\)

Tự tính nốt

a,

\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+16\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

19 tháng 1 2017

a) Sắp xếp theo luỹ thừa giảm dần của biến:

2016-02-29_222337

b) Từ đa thức được sắp xếp ở trên ta thực hiện phép tính:

2016-02-29_222348

c) Thay x = 0 vào đa thức P(x) ta được P(0) = 0 ⇒ x = 0 là nghiệm của đa thức P(x)

Thay x = 0 vào đa thức Q(x) ta được Q(0) = -1/4 ≠ 0 ⇒ x = 0 không phải là nghiệm của đa thức Q(x).

19 tháng 1 2017

t​uyệt vời ông mặt trờibatngo

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

28 tháng 4 2017

Bạn thay 0 vào rồi ra P(0) = 0 và Q(0) = -1/4

=> x = 0 là nghiệm của P(x) nhưng ko là nghiệm của Q(x)

28 tháng 4 2017

. Cảm ơn bạn nha ♥

24 tháng 7 2019

a) \(A\left(x\right)=2x^4-5x^3-x^4-6x^2+5+5x^2-10+x\)

\(=\left(2x^4-x^4\right)-5x^3+\left(5x^2-6x^2\right)+x+\left(5-10\right)\)

\(=3x^4-5x^3-x^2+x-5\)

\(B\left(x\right)=-7-4x+6x^4+6+3x-x^3-3x^4\)

\(=\left(6x^4-3x^4\right)-x^3+\left(3x-4x\right)+\left(6-7\right)\)

\(=x^4-x^3-x-1\)

24 tháng 7 2019

b) \(A\left(x\right)+B\left(x\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)+\left(x^4-x^3-x-1\right)\)

\(=5x^4-6x^3-x^2-6\)

 \(A\left(x\right)-B\left(x\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)-\left(x^4-x^3-x-1\right)\)

\(=\left(3x^4-5x^3-x^2+x-5\right)-x^4+x^3+x+1\)

\(=2x^4-4x^3-x^2+2x-4\)

5 tháng 5 2019

P(x)=5x5-4x4-2x3+4x2+3x+6

Q(x)=-x5+2x4-2x3+3x2-x+\(\frac{1}{4}\)