Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F(x)=62+5x+8+3x-3x2+3x3
=(36+8)+(5x+3x)-3x2+3x3
=3x3-3x2+8x+44
G(x)=12x2-6-9x2+3x3
=3x3+(12x2-9x2)-6
=3x3+3x2-6
F(x)+G(x)=3x3-3x2+8x+44+3x3+3x2-6
=(3x3+3x3)+(-3x2+3x2)+8x+(44-6)
=6x3+8x+38
\(F\left(x\right)=G\left(x\right)\\ \Rightarrow6^2-5x+8+3x-3x^2+3x^3=12x^2-6-9x^2+3x^3\\ \Leftrightarrow-3x^2-2x+44=3x^2-6\\ \Leftrightarrow6x^2+2x-50=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{301}}{6}\\x=\dfrac{-1-\sqrt{301}}{6}\end{matrix}\right.\)
Ta có:\(f\left(x\right)-h\left(x\right)=g\left(x\right)\Leftrightarrow h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(\Leftrightarrow h\left(x\right)=\left(2x^4+5x^3-x+8\right)-\left(x^4-x^2+3x+9\right)\)
\(=2x^4+5x^3-x+8-x^4-x^2-3x-9\)
\(=x^4+5x^3+x^2-4x-1.\)
Vậy, đa thức cần tìm là: \(h\left(x\right)=x^4+5x^3+x^2-4x-1.\)
Ta có: \(h\left(x\right)-g\left(x\right)=f\left(x\right)\Leftrightarrow h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(\Leftrightarrow h\left(x\right)=\left(2x^4+5x^3-x+8\right)+\left(x^4-x^2+3x+9\right)\)
\(=2x^4+5x^3-x+8+x^4-x^2+3x+9\)
\(=3x^4+5x^3-x^2+2x+17\)
Vậy, đa thức cần tìm là:\(h\left(x\right)=3x^4+5x^3-x^2+2x+17.\)
a, Thu gọn: F(x) = – 5x3 + 6x2 + 3x – 1; G(x) = – 5x3 + 6x2 + 4x + 2
b, Tìm được:M(x) = F(x) – G(x) = – x – 3 ;
N(x) = F(x) + G(x) = – 10x3 + 12x2 + 7x + 1
c, Nghiệm của đa thức M(x): x = – 3
Giải:
a) Thu gọn và sắp xếp:
\(F\left(x\right)=5x^2-1+3x+x^2-5x^3\)
\(\Leftrightarrow F\left(x\right)=6x^2-1+3x-5x^3\)
\(\Leftrightarrow F\left(x\right)=-5x^3+6x^2+3x-1\)
\(G\left(x\right)=2-3x^3+6x^2+5x-2x^3-x\)
\(\Leftrightarrow G\left(x\right)=2-5x^3+6x^2+4x\)
\(\Leftrightarrow G\left(x\right)=-5x^3+6x^2+4x+2\)
b) \(M\left(x\right)=F\left(x\right)-G\left(x\right)\)
\(\Leftrightarrow M\left(x\right)=-5x^3+6x^2+3x-1-\left(-5x^3+6x^2+4x+2\right)\)
\(\Leftrightarrow M\left(x\right)=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2\)
\(\Leftrightarrow M\left(x\right)=-x-3\)
\(N\left(x\right)=F\left(x\right)+G\left(x\right)\)
\(\Leftrightarrow N\left(x\right)=-5x^3+6x^2+3x-1+\left(-5x^3+6x^2+4x+2\right)\)
\(\Leftrightarrow N\left(x\right)=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2\)
\(\Leftrightarrow N\left(x\right)=-10x^3+12x^2+7x+1\)
c) Để đa thức M(x) có nghiệm
\(\Leftrightarrow M\left(x\right)=0\)
\(\Leftrightarrow-x-3=0\)
\(\Leftrightarrow-x=3\)
\(\Leftrightarrow x=-3\)
Vậy ...
f(x) + g(x) = 2x4 + 2x2
f(x) - g(x) = x4 - x2 + 2x
suy ra : f(x) = [ ( 2x4 + 2x2 ) + ( x4 - x2 + 2x ) ] : 2 = \(\frac{3x^4+x^2+2x}{2}\)
g(x) = [ ( 2x4 + 2x2 ) - ( x4 - x2 + 2x ) ] : 2 = \(\frac{x^4+3x^2-2x}{2}\)
Xét [\(f\left(x\right)+g\left(x\right)\)]+[\(f\left(x\right)-g\left(x\right)\)]=\(\left[2x^4+5x^2-3x\right]\)+\(\left[x^4-x^2+2x\right]\)
\(2f\left(x\right)=2x^4+5x^2-3x+x^4-x^2+2x\)
\(2f\left(x\right)=3x^4+4x^2-x\)
\(\Rightarrow f\left(x\right)=\dfrac{3x^4+4x^2-x}{2}\)
\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^4+2x^2-\dfrac{1}{2}x\)
Xét \(\left[f\left(x\right)+g\left(x\right)\right]-\left[f\left(x\right)-g\left(x\right)\right]=\)\(\left[2x^4+5x^2-3x\right]\)\(-\)\(\left[x^4-x^2+2x\right]\)
\(2g\left(x\right)=\)\(2x^4+5x^2-3x-x^4+x^2-2x\)
\(2g\left(x\right)=x^4+6x^2-5x\)
\(\Rightarrow g\left(x\right)=\dfrac{x^4+6x^2-5x}{2}\)
\(\Rightarrow g\left(x\right)=\dfrac{1}{2}x^4+3x^2-\dfrac{5}{2}x\)
M+N=(2xy2-3x+12)+(-xy2-3)
=2xy2-3x+12+(-xy2)-3
=(2xy2-xy2)+(-3x)+(12-3)
=1xy2-3x+9
bài 2:
a)f(x)=-5x4+x2-2x+6
g(x)=-5x4+x3+3x2-3
b)f(x)+g(x)=(-54+x2-2x+6)+(-5x4+x3+3x2-3)
=-5x4+x2-2x+6+(-5x4)+x3+3x2-3
=(-5x4-5x4)+x3+(x2+3x2)+(-2x)+(6-3)
=-10x4+x3+4x2-2x+2
f(x)-g(x)=(-5x4+x2-2x+6)-(-5x4+x3+3x2-3)
=-5x4+x2-2x+6-(+5x4)-x3-3x2+3
=(-5x4+5x4)+(-x3)+(x2-3x2)+(-2x)+(6+3)
=-x3-2x2-2x+9