Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x+\frac{2}{3}\right|\)
Ta có: \(\left|x+\frac{2}{3}\right|\ge0\forall x\)
\(A=0\Leftrightarrow\left|x+\frac{2}{3}\right|=0\Leftrightarrow x=-\frac{2}{3}\)
Vậy \(A_{min}=0\Leftrightarrow x=-\frac{2}{3}\)
\(B=\left|x\right|+\frac{1}{2}\)
Ta có: \(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+\frac{1}{2}\ge\frac{1}{2}\forall x\)
\(B=\frac{1}{2}\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)
Vậy \(B_{min}=\frac{1}{2}\Leftrightarrow x=0\)
Câu c,d tương tự
P/S tất cả những bài trên chỉ tìm được min, ko tìm được max.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
Bài 1:
a/ Kết quả: f(x) - g(x) + h(x) = 2x - 1
(tự ghép cặp vào r` tính hoặc tính = hàng dọc nhé bn, muộn r` , mk k muốn đánh máy)
b/ 2x - 1 = 0
<=> 2x = 1
<=> x = \(\dfrac{1}{2}\)
Vậy x = .... để f(x) - g(x) + h(x) = 0
Bài 2:
a/ dễ --> tự lm cko quen để đỡ mất căn bản nhé bn!
b/ sửa: g(x) = ..... + 2x3 + 3x
Làm: kết quả: 3x2 + 7x (ns chung là lười nên mk k muốn đánh máy, k hiểu thì ib lại vs mk)
c/ h(x) = 3x2 + 7x = 0
<=> x(3x + 7) = 0
<=> \(\left[{}\begin{matrix}x=0\\3x+7=0\Rightarrow3x=-7\Rightarrow x=\dfrac{-7}{3}\end{matrix}\right.\)
Vậy đa thức h(x) có 2 no là:....(tự ghi)
a: \(h\left(x\right)=f\left(x\right)+g\left(x\right)=x^3-x^2+x-24\)
Bậc là 3
b: \(k\left(x\right)=f\left(x\right)-g\left(x\right)=7x^3-9x^2+11x+6\)
\(g\left(\dfrac{3}{2}\right)=-3\cdot\dfrac{27}{8}+4\cdot\dfrac{9}{4}-5\cdot\dfrac{3}{2}-15=-\dfrac{189}{8}\)
\(k\left(\dfrac{3}{2}\right)=7\cdot\dfrac{27}{8}-9\cdot\dfrac{9}{4}+11\cdot\dfrac{3}{2}+6=\dfrac{207}{8}\)
\(h\left(x\right)=f\left(x\right)+g\left(x\right)+1=3x^2-30x+75+2\left|x-5\right| \)
\(=3\left(x^2-2.x.5+25\right)+2\left|x-5\right|+1=3\left(x-5\right)^2+2\left|x-5\right|+1\ge1\)
Giá trị nhỏ nhất của H(x bằng 1 khi và chỉ khi \(\hept{\begin{cases}\left(x-5\right)^2=0\\\left|x-5\right|=0\end{cases}\Leftrightarrow}x=5\)