K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

Hình bạn tự vẽ nhé còn lại minh giải cho.

Trên tia Ox lấy A" ; trên tia Oy lấy B' sao cho OA'=OB'=a
Ta có OA'+OB'= OA+OB =2a \Rightarrow AA'=BB'
Gọi H và K lần lượt là hình chiếu của A và B trên đường A'B'
ΔΔHAA'=ΔΔKBB'( cạnh huyền-Góc nhọn)
\Rightarrow HA'=KB',do đó HK=A'B'
Ta chứng minh đc HK<AB( dấu = \Leftrightarrow A trùng A',B trùng B'
do đó A'B'\leq AB.vậy AB nhỏ nhất \Leftrightarrow OA=OB=a

8 tháng 9 2018

Trên tia Ox lấy A" ; trên tia Oy lấy B' sao cho OA'=OB'=a
Ta có OA'+OB'= OA+OB =2a  AA'=BB'
Gọi H và K lần lượt là hình chiếu của A và B trên đường A'B'
ΔΔHAA'=ΔΔKBB'( cạnh huyền-Góc nhọn)
 HA'=KB',do đó HK=A'B'
Ta chứng minh đc HK<AB( dấu = A trùng A',B trùng B'
do đó A'B' AB.vậy AB nhỏ nhất  OA=OB=a

5 tháng 4 2016

a,

Xét tam giác OAM và tam giác OBM,ta có:

Cạnh OM là cạnh chung

OA = OB (gt)

góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)

=> Tam giác OAM = tam giác OBM (c.g.c)

=> MA = MB ( 2 cạnh tương ứng)

b,

Ta có: MA = MB (cmt)

=> Tam giác AMB là tam giác cân

=> Góc MAH = góc MBH

Xét tam giác AMH và tam giác BMH,ta có:

góc MAH = góc MBH ( cmt)

MA = MB ( cmt)

góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)

=> tam giác AMH và tam giác BMH ( g.c.g)

=> AH = HB ( 2 cạnh tương ứng)

=> H là trung điểm của AB (1)

Vì tam giác AMH = tam giác BMH (cmt)

 =>góc MHA = góc MHB ( 2 góc tương ứng)

mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)

=> góc MHA = góc MHB= 180 độ : 2 = 90 độ

=> MH vuông góc với AB (2)

Từ (1) và (2) => MH là đường trung trực của AB

=> OM là đường trung trực của AB ( vì H thuộc OM )

c,

Vì H là trung điểm của AB (cmt)

=> AH =HB = AB : 2 = 6 :2 = 3 (cm)

Xét tam giác OAH vuông tại H Ta có:

OA 2 = OH2 + AH2 ( định lí Py-ta-go)

=> 5 2 = OH2 + 3 2

=> 25 = OH2 + 9

=> OH2 = 25 - 9

=> OH2 = 16

=> OH = 16

=> OH = 4 cm 

5 tháng 4 2016

a,

Xét tam giác OAM và tam giác OBM,ta có:

Cạnh OM là cạnh chung

OA = OB (gt)

góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)

=> Tam giác OAM = tam giác OBM (c.g.c)

=> MA = MB ( 2 cạnh tương ứng)

b,

Ta có: MA = MB (cmt)

=> Tam giác AMB là tam giác cân

=> Góc MAH = góc MBH

Xét tam giác AMH và tam giác BMH,ta có:

góc MAH = góc MBH ( cmt)

MA = MB ( cmt)

góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)

=> tam giác AMH và tam giác BMH ( g.c.g)

=> AH = HB ( 2 cạnh tương ứng)

=> H là trung điểm của AB (1)

Vì tam giác AMH = tam giác BMH (cmt)

 =>góc MHA = góc MHB ( 2 góc tương ứng)

mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)

=> góc MHA = góc MHB= 180 độ : 2 = 90 độ

=> MH vuông góc với AB (2)

Từ (1) và (2) => MH là đường trung trực của AB

=> OM là đường trung trực của AB ( vì H thuộc OM )

c,

Vì H là trung điểm của AB (cmt)

=> AH =HB = AB : 2 = 6 :2 = 3 (cm)

Xét tam giác OAH vuông tại H Ta có:

OA 2 = OH2 + AH2 ( định lí Py-ta-go)

=> 5 2 = OH2 + 3 2

=> 25 = OH2 + 9

=> OH2 = 25 - 9

=> OH2 = 16

=> OH = 16

=> OH = 4 cm 

11 tháng 8 2021

a.Xét $\triangle$OAI và $\triangle$OBI có:

$\widehat{AOI}$ = $\widehat{BOI}$(OI là phân giác của $\widehat{xOy}$)

OB = OA(gt)

OI chung

=> $\triangle$OAI = $\triangle$OBI(c-g-c)

=>$\widehat{OIA}$ = $\widehat{OIB}$(2 góc t/ứ)

mà $\widehat{OIA}$ + $\widehat{OIB}$ = $180^0$

=>$\widehat{OIA}$ = $\widehat{OIB}$ = $180^0$ : 2 = $90^0$

=> OI$\bot$AB(đpcm)

b.Xét $\triangle$OBA có

AD là đng cao t/ứ vs OB(gt)

OI là đng cao t/ứ vs AB(cmt)

AD cắt OI tại C(gt)

=>C là trực tâm của $\triangle$OBA(tính chất 3 đng cao của $\triangle$)

=>BC ⊥Ox(đpcm)