K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ta có \(OP+PQ=OQ\)

\(OM+MN=ON\)

mà \(OP=OM;PQ=MN\)

\(\Rightarrow OQ=ON\)

Xét \(\Delta NOPvà\Delta QOMcó\)

\(OP=OM\) ( giả thiết )

\(\widehat{QON}\) là góc chung

\(OQ=ON\) (chứng minh trên)

\(\Rightarrow\Delta NOP=\Delta QOM\left(c-g-c\right)\)

vậy \(\Delta NOP=\Delta QOM\)

b) tự làm nhé

 

#\(N\)

`a,` Xét Tam giác `OMP` và Tam giác `ONP` có:

`OM = ON (g``t)`

\(\widehat{MOP}=\widehat{NOP}\) `(` tia phân giác \(\widehat{xOy}\) `)`

`OP` chung

`=>` Tam giác `OMP =` Tam giác `ONP (c-g-c)`

`b,` Vì Tam giác `OMP =` Tam giác `ONP (a)`

`=> MP = NP (` 2 cạnh tương ứng `)`

`=>`\(\widehat{MPH}=\widehat{NPH}\) `(` 2 góc tương ứng `)`

Xét Tam giác `MPH` và Tam giác `NPH` có:

`MP = NP (CMT)`

\(\widehat{MPH}=\widehat{NPH}(CMT)\)

`PH` chung

`=>` Tam giác `MPH = `Tam giác `NPH (c-g-c)`

`=>`\(\widehat{MHP}=\widehat{NHP}\) `(` 2 góc tương ứng `)`

Mà `2` góc này ở vị trí kề bù

`=>`\(\widehat{MHP}+\widehat{NHP}=180^0\)

`=>` \(\widehat{MHP}=\widehat{NHP}=\)\(\dfrac{180}{2}=90^0\)

`=>`\(MN\perp OP\left(đpcm\right)\)

loading...

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.a, chứng minh tam giác AOM=tam giác BOMb. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BDc. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Otbài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm...
Đọc tiếp

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.

a, chứng minh tam giác AOM=tam giác BOM

b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD

c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot

bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng 

a. ON=OM và AN=BM

b. tia OH là tia phân giác của góc xOy

c. đường thẳng qua B // AC cắt tia DN tại N

chứng minh: tam giác ABM=tam giác CNM

0

`a,` Xét Tam giác `OIM` và Tam giác `OIN` có:

`OM = ON (g``t)`

\(\widehat{MOI}=\widehat{NOI}\) `(` tia phân giác \(\widehat{xOy}\) `)`

`OI` chung

`=>` Tam giác `OIM =` Tam giác `OIN (c-g-c)`

`b,` Vì Tam giác `OIM =` Tam giác `OIN (a)`

`->` \(\widehat{OIM}=\widehat{OIN}\) `( 2` góc tương ứng `)`

`c,` Vì Tam giác `OIM =` Tam giác `OIN (a)`

`-> IM = IN (2` cạnh tương ứng `)`

`\color{blue}\text {#DuyNam}`

loading... 

3 tháng 12 2021

trên tia ox nhé

a: Xét ΔOMF và ΔOEN có

OM=OE

\(\widehat{O}\) chung

OF=ON

Do đó: ΔOMF=ΔOEN

Suy ra: MF=EN

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

Suy ra: \(\widehat{MBA}=\widehat{MDC}\)

Xét ΔCDB và ΔABD có 

DC=AB

\(\widehat{CDB}=\widehat{ABD}\)

DB chung

Do đó: ΔCDB=ΔABD

Suy ra: \(\widehat{MAB}=\widehat{MCD}\)

Xét ΔMAB và ΔMCD có 

\(\widehat{MAB}=\widehat{MCD}\)

AB=CD

\(\widehat{MBA}=\widehat{MDC}\)

Do đó: ΔMAB=ΔMCD

b: Xét ΔOMB và ΔOMD có

OM chung

MB=MD

OB=OD

Do đó: ΔOMB=ΔOMD

Suy ra: \(\widehat{BOM}=\widehat{DOM}\)

hay OM là tia phân giác của góc xOy

c: Ta có: ΔOBD cân tại O

mà ON là đường phân giác

nên ON là đường cao