\(\in\)Ox , B \(\in\) Oy  , sao cho O...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

Bạn tự vẽ hình nha!!

a, Phần a cứ sai sai sao ấy nên mk ko lm đc

b, Xét tam giác AOC và tam giác BOC có:

OA=OB(GT)

Góc AOC= góc BOC( tia Ot là tia pg của góc O)

OC chung

=>Tam giác AOC= tam giác BOC(c.g.c)

=>AC=BC( 2 cạch tương ứng)

=>Tam giác ABC cân ở A(đpcm)

c, Xét tam giác HOC và tam giác KOC có:

Góc OHC = góc OBC =90'( CH vuông góc Ox, CK vuông góc Oy)

OC chung

Góc HOC = góc BOC(GT)

=>Tam giác HOC= tam giác KOC(ch-gn)

=>OH=OB(2 cạnh tương ứng)

=>Tam giác OHK vuông tại O

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

15 tháng 8 2016

O A B x y M N *: Nhớ bổ sung thêm đường tròn tâm A,B

a) Xét \(\Delta\)OMA và \(\Delta\)OMB:

OA = OB

OM chung

AM = BM 

=> \(\Delta\)OMA = \(\Delta\)OMB (c.c.c)

b) Xét \(\Delta\)ONA và \(\Delta\)ONB :

OA = OB

ON chung 

AN = BN 

=> \(\Delta\)ONA = \(\Delta\)ONB (c.c.c)

c) Ta có: AM = BM và M nằm trong góc xOy^ => M nằm trên tia phân giác của xOy^    (1)

và AN = BN và N nằm trong góc xOy^ => N nằm trên tia phân giác của góc xOy^      (2)

Từ (1) và (2) => O,M,N thẳng hàng

d) Xét \(\Delta\)AMN và \(\Delta\)BMN :

AM = BM 

MN chung

AN = BN 

=> \(\Delta\)AMN = \(\Delta\)BMN (c.c.c)

e) Ta có: AN = BN và N nằm trong AMB^ 

=> MN là tia phân giác của góc AMB^ 

12 tháng 11 2017

sao AM=BM

8 tháng 5 2016

Bạn tự vẽ hình nhaleu

a.

Xét tam giác COA vuông tại C và tam giác DOB vuông tại D có:

OA = OB (gt)

AOB là góc chung

=> Tam giác COA = Tam giác DOB (cạnh huyền - góc nhọn)

b.

OA = OB (gt)

=> Tam giác OAB cân tại O

OAC + CAB = OAB

OBD + DBA = OBA

mà OAC = OBD (tam giác AOC = tam giác BOD)

      OAB = OBA (tam giác OAB cân tại O)

=> CAB = DBA

=> Tam giác IAB cân tại I

c.

Tam giác CIB vuông tại C có:

IC < IB (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà IA = IB (tam giác IBA cân tại I)

=> IC < IA

d.

Tam giác OAB cân tại O

=> \(OBA=\frac{180-AOB}{2}=\frac{180}{2}-\frac{AOB}{2}=90-\frac{AOB}{2}\)

Tam giác CAB vuông tại C có:

IAB + OBA = 90

IAB = 90 - OBA = \(90-\left(90-\frac{AOB}{2}\right)=90-90+\frac{AOB}{2}=\frac{AOB}{2}\)

=> IAB = 1/2 AOB

Chúc bạn học tốtok

15 tháng 8 2016

Mk cx ko biết là đúng ko nữaToán lớp 7

a: Xét ΔAOC và ΔBOC có 

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)

OC chung

Do đó: ΔAOC=ΔBOC

Suy ra: AC=BC

b: Xét ΔOAD và ΔOBD có 

OA=OB

\(\widehat{AOD}=\widehat{BOD}\)

OD chung

Do đó: ΔOAD=ΔOBD

Suy ra: DA=DB

Xét ΔDAC và ΔDBC có 

DA=DB

AC=BC

DC chung

Do đó: ΔDAC=ΔDBC

15 tháng 8 2016

a) Cm: AC=BD

+) Xét \(\Delta OAC\) và \(\Delta OBC\) có: OA=OB(gt); góc AOC=góc BOC(gt); cạnh OC chung

\(\Rightarrow\) \(\Delta OAC\)=\(\Delta OBC\) (c-g-c) => AC=BC(2 canh tương ứng)

b) +) Theo tính chất tia phân giác của 1 góc nên ta có: AD=BD

+) Xét tam giác ADC và tam giác BDC có: AC=BC(cma); AD=BD(cmt); CD chung

=> tam giác ADC= tam giác BDC(c-c-c)

17 tháng 8 2016

a)có OC là tia phân giác của góc AOB(gt)

   mà OA=OB (gt)

=> AC=BC(t/c tia phân giác)

b) có OD là tia phân giác của góc AOB(gt)

mà OA=OB(gt)

=> AD=BD( t/c tia phân giác )

xét tam giác ADC và tam giác BDC có

              AD=BD(cmt)

              AC chung

               AC=BC(cmt)

=> tam giác ADC= tam giác BDC(c-c-c)

vậy tam giác ADC= tam giác BDC