Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC
b: Ta có: ABCD là hình bình hành
nên CD//AB
mà AB⊥AC
nên CD⊥AC
c: Xét tứ giác ABNC có
AB//NC
BN//AC
Do đó: ABNC là hình bình hành
Suy ra: AB=CN
Xét ΔBAM vuông tại A và ΔNCM vuông tại C có
MA=MC
BA=NC
Do đó: ΔBAM=ΔNCM
O x y z t A D B C I
Xét tam giác ODB và tam giác OAC có: OD = OA
góc AOC = góc BOD (=90o)
OB = OC
=> tam giác ODB = tam giác OAC (c.g.c)=> AC = BD (2 cạnh t,ư )
b/Ta có góc DOC + COB = zOx = 90o
AOB + BOC = tOy = 90o
=> góc DOC = AOB mà OD =OA, OC = OB
=> tam giác ODC = OAB (c.g.c) => DC = AB (1)
Dễ có tam giác DCB = ABC (Vì BC chung, DC=AB,DB =AC )
=> góc CDB = CAB (2 góc t.ư) (2)
Dễ có tam giác CDA = BAD (vì AD chung, CD = AB, DB =AC ) => góc DCA = góc DBA (2 góc t.ư) (3)
Từ (1)(2)(3) => tam giác IDC =IAB (g.c.g)
=> ID = IA, IC = IB (cặp canh tương ứng )
Dễ có tam giác OIC = OIB (c.c.c)
=> góc COI = góc BOI (2 góc t.ư)
=> tia OI là phân giác của góc xOy
1: Xét ΔOIC vuông tại I và ΔOID vuông tại I có
OI chung
\(\widehat{COI}=\widehat{DOI}\)
Do đó: ΔOIC=ΔOID
Suy ra: IC=ID
hay I là trung điểm của CD
2: Xét ΔOIA vuông tại A và ΔOIB vuông tại B có
OI chung
\(\widehat{AOI}=\widehat{BOI}\)
Do đó: ΔOIA=ΔOIB
Suy ra: IA=IB