K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.a, chứng minh tam giác AOM=tam giác BOMb. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BDc. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Otbài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm...
Đọc tiếp

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.

a, chứng minh tam giác AOM=tam giác BOM

b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD

c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot

bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng 

a. ON=OM và AN=BM

b. tia OH là tia phân giác của góc xOy

c. đường thẳng qua B // AC cắt tia DN tại N

chứng minh: tam giác ABM=tam giác CNM

0
18 tháng 8 2020

x O y z A B M

a) xét \(\Delta AOM\)và \(\Delta BOM\)

\(AO=BO\left(gt\right);\widehat{AOM}=\widehat{BOM}\left(gt\right);\)OM là cạnh chung

=>\(\Delta AOM\)=\(\Delta BOM\)(c-g-c)

=> AM = BM (hai cạnh tương ứng )

=> M là trung điểm của AB

b) vì AO = BO

=> \(\Delta ABO\)là tam giác cân

vì OM là phân giác của AB 

=> OM vừa là đường cao của tam giác ABC

=> \(OM\perp AB\left(đpcm\right)\)

26 tháng 12 2020

...

13 tháng 8 2016

bạn ơi hình như đề bài sai

 

21 tháng 2 2020

Tự vẽ hình nhé ?
a) Vì Ot là tia phân giác của ∠xOy (GT)
=> ∠xOt = ∠yOt (tính chất)
Hay ∠AOM = ∠BOM (1)
Vì MA ⊥ Ox (GT)
=> ∠OAM = 90o (ĐN) (2)
Vì MB ⊥ Oy (GT)
=> ∠OBM = 90o (ĐN)
Mà ∠OAM = 90o (ĐN) (Theo (2))
=> ∠OAM = ∠OBM = 90(3)
Xét ∆MOA và ∆MOB có :
∠OAM = ∠OBM = 90o (Theo (3))
OM chung
∠AOM = ∠BOM (Theo (1))
=> ∆MOA = ∆MOB (cạnh huyền - góc nhọn) (4)
=> MA = MB (2 cạnh tương ứng)
b) Xét ∆MOA vuông tại A có :
OA2 + MA2 = OM2 (ĐL pi-ta-go)
Mà OA = 8cm (GT), OM = 10cm (GT)
=> 82 + MA2 = 102
=> 64 + MA2 = 100
=>         MA2 = 100 - 64
=>         MA2 = 36
=>         MA2 = \(\sqrt{36}\)
=>         MA   = 6cm
c) Từ (4) => OA = OB (2 cạnh tương ứng) (5)
Xét ∆IOA và ∆IOB có :
OA = OB (Theo (5))
∠AOI = ∠BOI (Theo (1))
OI chung
=> ∆IOA = ∆IOB (c.g.c) (6)
=> IA = IB (2 cạnh tương ứng)
Mà I nằm giữa A và B
=> I là trung điểm của AB (7)
Từ (6) => ∠AIO = ∠BIO (2 góc tương ứng)
Mà ∠AIO + ∠BIO = 180o (2 góc kề bù)
=> ∠AIO = ∠BIO = 180o : 2 = 90o
=> OI ⊥ AB (ĐN) hay OM ⊥ AB (8)
Từ (7), (8) => OM là đường trung trực của AB (đpcm)
Vậy ...