K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

Ta có hình vẽ :

O A B C D E x y

a/ Xét tam giác OAD và tam giác OBC có:

OA = OC (GT)

OˆO^: góc chung

OB = OD (GT)

=> tam giác OAD = tam giác OBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)

b/ Ta có: BˆB^=DˆD^ (vì tam giác OAD = tam giác OBC) (1)

Ta có: {OA=OCOB=OD{OA=OCOB=OD⇒AB=CD⇒AB=CD (2)

Ta có: OADˆOAD^=OCBˆOCB^ (vì tam giác OAD = tam giác OBC) (*)

+)Ta có: OADˆOAD^+DABˆDAB^=1800 (**)

+) Ta có: OCBˆOCB^+BCDˆBCD^=1800 (***)

Từ (*),(**),(***) => DABˆDAB^=BCDˆBCD^ (3)

Từ (1),(2),(3) => tam giác EAB = tam giác ECD

c/ Xét tam giác OAE và tam giác OCE có:

OA = OC (GT)

AE = EC (vì tam giác EAB = tam giác ECD)

OE: cạnh chung

=> tam giác OAE = tam giác OCE (c.c.c)

=> AOEˆAOE^=COEˆCOE^ (2 góc tương ứng)

=> OE là phân giác xOyˆxOy^ (đpcm)

13 tháng 12 2015

câu hỏi tương từj

 **** **** ****

 

a: Xét ΔOAD và ΔOBC có 

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

b: Ta có: ΔOAD=ΔOBC

nên \(\widehat{OAD}=\widehat{OBC}\)

\(\Leftrightarrow180^0-\widehat{OAD}=180^0-\widehat{OBC}\)

hay \(\widehat{EAB}=\widehat{ECD}\)

Xét ΔEAB và ΔECD có 

\(\widehat{EAB}=\widehat{ECD}\)

AB=CD

\(\widehat{EBA}=\widehat{EDC}\)

Do đó: ΔEAB=ΔECD

c: Ta có: ΔEAB=ΔECD

nên EB=ED

Xét ΔOEB và ΔOED có 

OE chung

EB=ED

OB=OD

Do đó: ΔOEB=ΔOED

Suy ra: \(\widehat{BOE}=\widehat{DOE}\)

hay OE là tia phân giác của góc xOy

7 tháng 12 2015

hình

hinh bai 43

a) ∆OAD và ∆OCB có: OA= OC(gt)

∠O chung

OB = OD (gt)

OAD = OCB (c.g.c)  AD = BC

Nên ∆OAD=∆OCB(c.g.c)

suy ra AD=BC.

b)

Ta có  ∠A1 = 1800 – ∠A2

∠C1 = 1800 – ∠C2

mµ ∠A2 = ∠C2 do ΔOAD = ΔOCB (c/m trên)

⇒ ∠A1 = ∠C1

Ta có OB = OA + AB

OD = OC + CD mà OB = OD, OA = OC ⇒ AB = CD

Xét ΔEAB = ΔECD có:

∠A1 = ∠C1  (c/m trên)

AB = CD (c/m trên)

∠B1 = ∠D1 (ΔOCB = ΔOAD)

⇒ ΔEAB = ΔECD (g.c.g)

c) Xét ΔOBE và ΔODE có:

OB = OD (GT)

OE chung

AE = CE (ΔAEB = ΔCED)  ⇒ΔOBE = ΔODE (c.c.c)

⇒ ∠AOE = ∠COE  ⇒ OE là phân giác của góc ∠xOy.

16 tháng 7 2017

a) ∆OAD và ∆OCB có: OA= OC(gt)

=(=)

OD=OB(gt)

Nên ∆OAD=∆OCB(c.g.c)

suy ra AD=BC.

b) ∆OAD=∆OCB(cmt)

Suy ra: 

 = => =

Do đó ∆AOE = ∆OCE(c .c.c)

suy ra: =

vậy OE là tia phân giác của xOy.

b) ∆AEB= ∆CED(câu b) => EA=EC.

∆OAE và ∆OCE có: OA=OC(gt)

EA=EC(cmt)

OE là cạnh chung.

Nên ∆OAE=∆(OCE)(c .c.c)

suy ra: =

vậy OE là tia phân giác của góc xOy.