Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)`
Có `IH⊥Ox=>hat(H_1)=90^0`
`IK⊥Oy=>hat(K_1)=90^0`
Xét `Delta KIO` và `Delta HIO` có :
`{:(hat(K_1)=hat(H_1)(=90^0)),(OI-chung),(IK=IH(GT)):}}`
`=>Delta KIO=Delta HIO(c.h-c.g.v)(đpcm)`
`b)`
Có `Delta KIO=Delta HIO(cmt)=>hat(O_1)=hat(O_2)` ( 2 góc t/ứng )
mà `OI` nằm giữa `Ox` và `Oy(I in hat(xOy))`
nên `OI` là p/g của `hat(xOy)(đpcm)`
Xét tam giác OBM và tam giác OAM có
OMA=OMB=90(gt)
OM cạnh chung
AOM=BOM(gt)
Do đó tam giác OBM=OAM(CH-GN) (1)
--> Cạnh AM=MB (2 cạnh tương ứng)
b) Từ (1) tcó: OA=OB(2 cạnh tương ứng)
---> Tam giác OAB là tam giác cân
:33
O x y t H A B C
a) Xét2 \(\Delta vuông\)AHO va BHO co
góc AOH = góc BOH ( Ot là tia phân giác góc xOy)
OH là cạnh chung
\(\Rightarrow\Delta AHO=\Delta BHO\)(góc vuông,góc nhọn kề cạnh ấy)
\(\Rightarrow OA=OB\)(2 cạnh tương ứng)
b) Xét \(\Delta OAC\)và \(\Delta OBC\)có:;
OA = OB ( chứng minh trên)
góc AOH = góc BOH ( giả thiết )
OC là cạnh chung
\(\Rightarrow\Delta OAC=\Delta OBC\)(c.g.c)
\(\Rightarrow CA=CB\)( 2 cạnh tương ứng)
và góc OAC = góc OBC ( 2 góc tương ứng)
a)\(\Delta ABH\) vuông tại H có:
BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)
=> BH=5 cm
BC=BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có:
AH2 + HC2 =AC2 ( đl Pytago)
=> AC2 =122 + 162 =20 cm
b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL Pytago)
=> BH2 =AB2 - AH2 =132 - 122 =25
=> BH=5 cm
BC= BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)
=> AC2 = 122 + 162 =400
=> AC= 20 cm
a) vì OT là tia phân giác của xoy nên xot =yot , i thuộc ot từ i ta kẻ hai đoạn ik và ih .
ih nằm trong góc xot và ih vuông góc với ox.ik nằm trong góc yot và ik vuông góc với oy. Nên ih=ik.
câu 3 mk chịu bn hỏi thầy cô nha! Nhớ k cho mk nha!
a) vì OT là tia phân giác của xoy nên xot =yot ,
i thuộc ot từ i ta kẻ hai đoạn ik và ih .
ih nằm trong góc xot và ih vuông góc với ox.ik nằm trong góc yot và ik vuông góc với oy.
Nên ih=ik.
a: Xét ΔOHI vuông tại H và ΔOKI vuông tại K có
OI chung
góc HOI=góc KOI
=>ΔOHI=ΔOKI
b: ΔOHI=ΔOKI
=>IH=IK