K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

x O y z A B M

a) xét \(\Delta AOM\)và \(\Delta BOM\)

\(AO=BO\left(gt\right);\widehat{AOM}=\widehat{BOM}\left(gt\right);\)OM là cạnh chung

=>\(\Delta AOM\)=\(\Delta BOM\)(c-g-c)

=> AM = BM (hai cạnh tương ứng )

=> M là trung điểm của AB

b) vì AO = BO

=> \(\Delta ABO\)là tam giác cân

vì OM là phân giác của AB 

=> OM vừa là đường cao của tam giác ABC

=> \(OM\perp AB\left(đpcm\right)\)

12 tháng 12 2019

a) 

 Xét \(\Delta\)OAC và \(\Delta\)OBC có:

^CAO  = ^CBO ( = 90\(^o\))

OC chung

^AOC = ^BOC ( OC là phân giác ^xOy)

=>  \(\Delta\)OAC = \(\Delta\)OBC ( cạnh huyền - góc nhọn) => OA = OB 

b)  \(\Delta\)OAC =  \(\Delta\)OBC => CA = CB ; ^BCO = ^ACO

Xét  \(\Delta\)IAC và \(\Delta\)I BC có: CA = CB ; ^BCI = ^ACI ( vì ^BCO = ^ACO ) ; CI chung

=> \(\Delta\)IAC = \(\Delta\)IBC  ( c.g.c) (1)

=> IA = IB => I là trung điểm AB  (2)

c)  từ (1) => ^AIC = ^BIC  mà ^AIC + ^BIC = 180\(^o\)

=> ^AIC = ^BIC = \(90^o\)

=> CI vuông góc AB

=> CO vuông goác AB tại I  (3)

Từ (2) ; ( 3) => CO là đường trung trực của đoạn thẳng AD.

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.a, chứng minh tam giác AOM=tam giác BOMb. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BDc. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Otbài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm...
Đọc tiếp

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.

a, chứng minh tam giác AOM=tam giác BOM

b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD

c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot

bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng 

a. ON=OM và AN=BM

b. tia OH là tia phân giác của góc xOy

c. đường thẳng qua B // AC cắt tia DN tại N

chứng minh: tam giác ABM=tam giác CNM

0
27 tháng 2 2022

Cm: a) Xét t/giác OAB và t/giác OAC

có góc C = góc B = 900 (gt)

   OA : chung

  góc O1 = góc O2 (gt)

=> t/giác OAB = t/giác OAC (ch - gn)

=> AB = AC (hai cạnh tương ứng)

b) Áp dụng định lí Py - ta - go vào t/giác OAB vuông tại B, ta có :

  OA2 = OB2 + AB2 

=> AB2 = OA2 - OB2 = 52 - 42 = 25 - 16 = 9

=> AB = 3 (cm)

27 tháng 2 2022

Syn cám ưn đồng chí :) 🥰

Bài 3 

Trả lời:

a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :

AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)

AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)

Aˆ:chungA^:chung

=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)

=> AH = AK (2 cạnh tương ứng)

                                            ~Học tốt!~

13 tháng 4 2020

Bài 1 : a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :

AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)

AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)

Aˆ:chungA^:chung

=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)

=> AH = AK (2 cạnh tương ứng)

Bài 2 

a, Xét tam giác OBN và tam giác MAO ta có:

OB=OA( giả thiết)

góc OBN= góc OAM=90 độ

có chung góc O

⇒⇒tam giác OBN = tam giác OAM( cạnh góc vuông/ góc nhọn kề cạnh)

suy ra: ON=OM(hai cạnh tương ứng)

+ vì OA=OB và ON=OM

suy ra : OM-OB=ON-OA

suy ra : BM=AN

b, theo câu a ta có :

tam giác OBN= tam giác OAM

suy ra : góc ANH = góc BMH( hai góc tương ứng )

xét tam giác HMB và tam giác HAN ta có

BN=AN

góc HAN = góc HBM = 900

góc ANH = góc HBM

suy ra: tam giác BMH = tam giác ANH(cạnh góc vuông/ góc nhọn kề cạnh)

suy ra : HB=HA(hai cạnh tương ứng)

xét tam giác OHA và tam giác OHB ta có

OA=OB(giả thiết)

HB=HA

OH là cạnh chung

suy ra: tam giác OHA = tam giác OHB(c.g.c)

suy ra: góc BOH= góc AOH( hai góc tương ứng)

vậy OH là tia phân giác của góc xOy

c, xét tam giác MOI và tam giác NOI ta có :

OM=On ( giả thiết)

góc BOH= góc HOA

Oi là cạnh chung

suy ra tam giác MOI= tam giác NOI(c.g.c)

suy ra góc MIO = góc NIO (hai góc tương ứng)

mà góc MIO + góc NIO = 1800 ( hai góc kề bù)

nên OI vuông góc với MN

áp dụng định lý của hai đường thẳng vuông góc ta có ba điểm O,H,I thẳng hàng

Bài 3 mình không biết làm :)))

Chúc bạn học tốt ~!