Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A K M I C H B N
a)
Ta có nối K với M
=> Xét t/gMCK và t/gMHC ta có:
CK=CH (gt) hay ^KCM=^MCH (gt)
MC (cạnh chung)
=>t/gMCK = t/gMCH (c.g.c)
=>MK=MH ( tương ứng)
đpcm.
b) Tiếp tục nối K và H
Gọi I là giao điểm của CM và KH
Xét t/gICK và t/gICH ta có:
CK=CH (gt) hay ^HCM=^CMK (gt)
CI (cạnh chung)
=>t/gICK=t/gICH (c.g.c)
=>^CIK=^CIH( tương ứng)
Mà ^CIK+^CIH=180o( góc kề bù)
=>^CIK=^CIH=90o
=>CI_|_HK
=>CM_|_HK
đpcm.
c) Quan sát hình ta thấy ^CMH=65o=^CMN=65o (1)
Vì ^KCM+^MCN=90o
=>^MCN=90o-^KCM
=>^MCN=90o-35o
=>^MCN=65o(2)
Từ (1) và (2) vì ^NMC=^NCM => t/gNMC là t/g cân.
đpcm.
https://h.vn/hoi-dap/question/38145.html
bạn xem ở đây nhé
a) Ta có: tam giác ABC cân tại A nên đường cao AH còn là đường trung tuyến
Suy ra: H là trung điểm của BC
BH = BC/2 = 3cm
Áp dụng định lý Py ta go ta có: AH = căn (AB^2 - BH^2) = 4cm
b)Ta có: G là trọng tâm của tam giác ABC nên G thuộc giao của ba đường trung tuyến của tam giác
Suy ra: G thuộc đường trung tuyến kẻ từ A
Mà ở câu a, AH còn là đường trung tuyến nên G thuộc AH
Vậy: A,G,H thẳng hàng
c)Tam giác ABC cân tại A, có AH là đường cao nên còn là đường phân giác
Suy ra: góc BAG = góc CAG
Xét tam giác ABG và tam giác ACG có:
AB = AC (tam giác ABC cân tại A)
góc BAG = góc CAG (cm trên)
AG chung
Vậy tam giác ABG = tam giác ACG (c-g-c)
Suy ra: góc ABG = góc ACG
Bài 1:
|x-3| + | 2x - 4| =5
Lập bảng xét dấu:
x | 2 3 |
2x -2 | - 0 + | + |
x - 3 | - | - 0 + |
* Nếu x \(>\) 3 đẳng thức trở thành
x - 3 + 2x -4 = 5 => x = 4( thỏa mãn)
* Nếu 2\(\le\) x <3
3 - x + 2x -4 = 5 => x = 6 ( k thỏa mãn)
+ Nếu x < 2
3 - x + 4 - 2x = 5 => x = 2/3 (thỏa mãn)
x O y A B C
Ta nối O với A.
Xét \(\Delta OAB\) và \(\Delta OAC\) có :
\(\hept{\begin{cases}\widehat{OBA}=\widehat{OCA=90^o}\\OAchung\\OB=OC\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta OAB=\Delta OAC\) ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\widehat{BOA}=\widehat{COA}\)
\(\Rightarrow OA\) là tia phân giác của \(\widehat{xOy}\)
*) Nhận xét : Tập hợp các điểm cách đều hai cạnh của một góc thì nằm trên tia phân giác của góc đó.
mình sửa bài 1. bạn ghi đề sai " ác " quá
1. cho góc \(\widehat{xOy}\)và tia Oz nằm trong góc đó sao cho \(\widehat{xOz}=4.\widehat{yOz}\). tia phân giác Ot của góc xOz sao cho .....
x O y t z
Ta có : \(Ot\perp Oy\)nên \(\widehat{zOt}+\widehat{yOz}=90^o\)
Mà Ot là phân giác của \(\widehat{xOz}\)nên \(\widehat{zOt}=\frac{1}{2}.\widehat{xOz}\)
\(\Rightarrow\frac{1}{2}.\widehat{xOz}+\widehat{yOz}=90^o\)
Mà \(\widehat{xOz}=4.\widehat{yOz}\)
\(\Rightarrow\frac{1}{2}.4.\widehat{yOz}+\widehat{yOz}=90^o\Rightarrow3.\widehat{yOz}=90^o\Rightarrow\widehat{yOz}=30^o\)
Do đó : \(\widehat{xOy}=\widehat{xOz}+\widehat{yOz}=4.\widehat{yOz}+\widehat{yOz}=5.\widehat{yOz}=150^o\)
Điểm A nằm trong góc xOy và cách đều hai tia Ox và Oy, do đó A nằm trên tia phân giác của góc xOy hay OA là tia phân giác của góc xOy
⇒ x O A ^ = 1 2 x O y ^ = 1 2 .60 ° = 30 °
Gọi D và E lần lượt là chân đường vuông góc của A lên Ox và Oy
Khi đó AD = AE = 6 cm; D O A ^ = 30 °
Trong tam giác AOD vuông ở D có D O A ^ = 30 °
Suy ra AD = 1 2 OA (Trong tam giác vuông cạnh đối diện với góc 30 ° bằng một nửa cạnh huyền).
O A = 2 A D = 2.6 = 12 c m
Chọn đáp án D