\(\widehat{xoy}\)vẽ M trên tia phân  giác của \(\widehat{xoy...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

a, Xét △AOM vuông tại A và △BOM vuông tại B

Có: AOM = BOM (gt)

      OM là cạnh chung

=> △AOM = △BOM (ch-gn)

=> AM = MB (2 cạnh tương ứng)

và OA = OB (2 cạnh tương ứng)

=> △OAB cân tại O

b, Xét △DOM và △EOM

Có: OD = OE (gt)

    DOM = EOM (gt)

   OM là cạnh chung

=> △DOM = △EOM (c.g.c)

=> MD = ME (2 cạnh tương ứng)

Ta có hình vẽ sau:

O x y M

a) Xét \(\Delta OMB\)và \(\Delta OMA:\)

OM: cạnh chung

OB=OA(gt)

\(\widehat{OBM}=\widehat{OAM}=90^o\)

\(\Rightarrow\Delta OMB=\Delta OMA\left(ch-cgv\right)\)

=> MB=MA( 2 cạnh tương ứng)

=> Đpcm

b) Ta có: \(\Delta OMB=\Delta OMA\)(cm câu a)

=> \(\widehat{BOM}=\widehat{AOM}\)(2 góc tương ứng)

=> OM là tia phân giác của \(\widehat{xOy}\)

17 tháng 6 2019

120 y x m y' m d c O

a) Ta có: \(\widehat{xOy}=120^o\)

có Om là tia phân giác 

=> \(\widehat{mOy}=\widehat{mOx}=120^o:2=60^o\)

Oy' là tia đối tia Oy

=> \(\widehat{yOy'}=180^o\)

=> \(\widehat{xOy'}=\widehat{yOy'}-\widehat{yOx}=180^o-120^o=60^o\)

=> \(\widehat{xOy'}=\widehat{xOm}=60^o\)

Mặt khác Ox nằm giữa hai tia Om, Oy'

=> Õx là phân giác góc y'Om

b) Ta có: Od nằm phóa ngoài góc xOy

Oy' nằm phía ngoài góc xOy

Mà \(\widehat{xOy'}=60^o< 90^o=\widehat{xOd}\)

=> Oy' nằm giữa hai tia Ox, Od

c) \(\widehat{mOc}=\widehat{mOy}+\widehat{yOc}=60^o+90^o=150^o\)

d) Ta có: On là phân giác góc dOc

mà \(\widehat{dOc}=360^o-\widehat{xOy}-\widehat{xOd}-\widehat{yOc}=60^o\)

=>\(\widehat{dOn}=\widehat{nOc}=60^o:2=30^o\)

=> \(\widehat{mOn}=\widehat{mOc}+\widehat{cOn}=150^O+30^O=180^O\)

13 tháng 4 2020

Bạn tự vẽ hình nhé

a, Xét tam giác OBM và tam giác OAM có: góc BOM = AOM,OBM=OAM

Do đó : OMB=OMA

Xét tam giác OBM=tam giácOAM (c.g.c)

b,Ta có :tam giác OBM = tam giác OAM (ý a)

Do đó: OB=OA(2 cạnh tương ứng)

Nên:tam giác BOA cânt ại A 

c, Ta có :tam giác OBM= tam giác OAM (ý a)

Do đó: MB=MA (2 cạnh tương ứng)

Xét tam giác MBE = tam giác MAD (g.c.g)

Do đó MD=ME (2 cạnh tương ứng )

d, Ta có :OE=OB+BE

và:OD=OA+AD

Mà : OA=OB(CMT);BE=AD(vì tam giác MBE = tam giác MAD )

Nên:OE=OD

Gọi OM cắt DE tại I

Xét tam giác DOI=tam giác EOI (c.g.c)

Do đó :OID = OIE (2 góc tương ứng)

Mà OID + OIE= 180 độ(kề bù)

Nên : OID = OIE = 90 độ

Do đó: OM vuông góc DE 

Chỗ nào k hiểu nt hỏi mk nhé

13 tháng 4 2020

x O y A B D E 1 2 M 1 2 I 1 2 1 1 2 2

a) Xét \(\Delta OMA\)và \(\Delta OMB\)có :

\(OM\)chung

\(\widehat{O_1}=\widehat{O_2}\)( vì OM là tia phân giác của \(\widehat{xOy}\))

=> \(\Delta OMA=\Delta OMB\)( cạnh huyền - góc nhọn )

=> \(MA=MB\)( hai cạnh tương ứng )

=> \(OA=OB\)( hai cạnh tương ứng )

b) Vì \(OA=OB\)=> \(\Delta OAB\)là tam giác cân tại O

c) ( Hình mình vẽ thiếu, bạn nhớ bổ sung nhé )

Ta có : \(MA\perp Ox\)=> \(\widehat{A_1}=\widehat{A_2}=90^0\)

Tương tự : \(MB\perp Ox\)=> \(\widehat{B_1}=\widehat{B_2}=90^0\)

Xét \(\Delta MAD\)và \(\Delta MBE\)có : 

\(\widehat{A_2}=\widehat{B_2}\left(cmt\right)\)

\(MA=MB\left(gt\right)\)

\(\widehat{M_1}=\widehat{M_2}\left(dd\right)\)

=> \(\Delta MAD=\Delta MBE\left(g.c.g\right)\)

=> \(MD=ME\)( hai cạnh tương ứng )

=> \(AD=BE\)( hai cạnh tương ứng )

d) Nối D với E được đoạn thẳng DE cắt OM tại I

Ta có : \(OA+AD=OD\)

            \(OB+BE=OE\)

mà \(OA=OB\)\(AD=BE\)

=> \(OD=OE\)

Xét \(\Delta OID\)và \(\Delta OIE\)ta có :

\(OD=OE\left(cmt\right)\)

\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)

\(OM\)chung

=> \(\Delta OID\) =  \(\Delta OIE\)( c.g.c )

=> \(\widehat{I_1}=\widehat{I_2}\)( hai góc tương ứng ) ( 1 )

Ta có : \(\widehat{I_1}+\widehat{I_2}=180^0\)( 2 )

Từ ( 1 ) và ( 2 ) => \(\widehat{I_1}=\widehat{I_2}=\frac{180^0}{2}=90^0\)

=> \(OI\perp DE\)hay \(M\perp DE\)

* Ủng hộ nhé *

22 tháng 2 2018

x O z y t A B C M H K I N

Gọi I là giao điểm của MC và OB; MC giao Ox tại N

Từ điểm I kẻ IH vuông góc với MA tại H; IK vuông góc với tia Ox tại K

Góc ^xOz=1200, phân giác Oy => ^xOy=^yOz=600

Do Ot là phân giác ^xOy => OC là phân giác góc ^NOI. Mà OC vuông góc với NI

=> Tam giác ONI cân tại O

Lại có ^NOI hay ^xOy=600 => Tam giác NOI là tam giác đều

Ta thấy tam giác NOI có 2 đường cao OC và IK => OC=IK  (1)

Ta có: IH và KA vuông góc với AM => IM // KA (Quan hệ //, vuông góc)

 Tương tự: IK // AH

=> IH=KA; IK=AH (t/c đoạn chắn) (2)

Từ (1) và (2) => OC=AH (*)

Do tam giác NOI đều => ^OIN=600 => ^BIM=600 (Đối đỉnh) (3)

IH//KA (cmt) => IH//ON. Mà ^ONI=600 => ^HIM=600 (4)

(3); (4) => ^BIM=^HIM

=> C/m được \(\Delta\)IBM=\(\Delta\)IHM (Cạnh huyền góc nhọn) => MB=MH

=> MA - MB = MA - MH = AH (**)

Từ (*) và (**) => MA - MB = OC (đpcm).

Chúc bạn học tốt !

25 tháng 2 2018

=> MA - MB = MA - MH = AH (**)

Từ (*) và (**) => MA - MB = OC (đpcm).

19 tháng 11 2017

Bạn vẽ hình rồi chụp lên đc ko

19 tháng 11 2017

bài này dễ à bạn vẽ thê đường phụ một tí là ok cmnr 

28 tháng 2 2019

o x y z A B C D M

28 tháng 2 2019

bÂY GIỜ CÂU 1 MÌNH ĐÃ LÀM ĐC NHƯ THẾ NÀY RỒI