\(\widehat{XOY} \) , trên hai cạnh ox và oy lần lượt lấy các đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2019

Trên tia Ox lấy A', trên tia Oy lấy B' sao cho OA' = OB' = a.

Ta có: \(OA'+OB'=OA+OB=2a\Rightarrow AA'=BB'\)

Gọi H và K lần lượt là hình chiếu của A và B trên đường thẳng A'B'.

Tam giác HAA' = tam giác KBB'. (cạnh huyền - góc nhọn )

Suy ra: HA' = KB'. Do đó HK = A'B'.

Ta chứng minh được:

\(HK\le AB\) ( dấu "=" <=> A trùng A', B trùng B'.

Do đó \(A'B'\le AB\)

Vậy AB nhỏ nhất <=> OA = OB = a.

18 tháng 8 2018

O y x A t m n

a) Ta có: \(\widehat{xOy}+\widehat{OAt}=120^0+60^0=180^0\)

Mà hai góc ở vị trí: trong cùng phía bù nhau

Nên At // Oy

b) On là tia phân giác của góc xOy \(\Rightarrow\widehat{yOn}=\widehat{xOn}=\frac{\widehat{xOy}}{2}=\frac{120^0}{2}=60^0\)

Vì At // Oy => \(\widehat{xAt}=\widehat{xOy}=120^0\) (đồng vị)

Am là tia phân giác của góc xAt \(\Rightarrow\widehat{xAm}=\widehat{tAm}=\frac{\widehat{xAt}}{2}=\frac{120^0}{2}=60^0\)

Ta thấy \(\widehat{xAm}=\widehat{xOn}=60^0\)

Mà hai góc này ở vị trí đồng vị

=> On // Am 

giúp ik mn

28 tháng 2 2019

o x y z A B C D M

28 tháng 2 2019

bÂY GIỜ CÂU 1 MÌNH ĐÃ LÀM ĐC NHƯ THẾ NÀY RỒI

Xét \(\Delta AOD\)và \(\Delta COB\)

\(OA=OC\left(gt\right)\)

\(AOD=COB\left(=90-DOC\right)\)

\(OD=OB\left(gt\right)\)

\(\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\Rightarrow ADO=CBO\left(1\right)\)

Gọi giao điểm của BF và OD là M

\(\)Ta có \(FMD=OMB\left(2\right)\)(đối đỉnh)

\(\left(1\right)\left(2\right)\Rightarrow ADO+FMD=OMB+CBO\Rightarrow FDM+FMD=MBO+OMB\)

\(\Rightarrow180-MFD=180-MOB=180-90\left(MOB=DOB=90\right)\Rightarrow MFD=90\)

Vậy \(BF\perp AD\)

3 tháng 1 2019

O x y z t A B C D F 1 2 3 E

Gọi E là giao điểm của Oy và AD

Ta có: \(\widehat{O_1}+\widehat{O_2}=\widehat{COB}\)(do tia OA nằm giữa hai tia OC và OB)

          ​\(\widehat{O_3}+\widehat{O_2}=\widehat{AOD}\)(do tia OB nằm giữa hai tia OA và OD)

    Mà \(\widehat{O_1}=\widehat{O_3}=90^o\)(do \(Oz\perp Ox,Ot\perp Oy\))

Do đó: ​\(\widehat{COB}=\widehat{AOD}\)

\(\Delta AOD\)và \(\Delta COB\)có: 

       \(\widehat{COB}=\widehat{AOD}\)(c.m.t)

       OA = OC (theo gt) 

       OB = OD (theo gt)

Do đó: \(\Delta AOD\)=\(\Delta COB\)(c.g.c)

\(\Delta FBE\) có: \(\widehat{EFB}+\widehat{FEB}+\widehat{FBE}=180^o\)(theo định lí tổng ba góc của một tam giác)​

\(\Delta OED\) có: \(\widehat{O_3}+\widehat{ODE}+\widehat{OED}=180^o\)(theo định lí tổng ba góc của một tam giác)​

     Mà \(\widehat{FBE}=\widehat{ODE}\) (do ​\(\Delta COB\)\(\Delta AOD\))

            \(\widehat{FEB}=\widehat{OED}\)(2 góc đối đỉnh)

Suy ra: \(\widehat{EFB}=\widehat{O_3}\)

        Mà \(\widehat{O_3}=90^o\)(do \(Oy\perp Ot\))

Do đó: \(\widehat{EFB}=90^o\)nên \(BF\perp FA\)

mik nha, mik mất công làm lắm đó! ^_^