Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác AOB và tam giác AOC có:
AO chung
\(\widehat{AOB}\)=\(\widehat{AOC}\)(gt)
\(\Rightarrow\)tam giác AOB=tam giác AOC(CH-GN)
\(\Rightarrow\)AB=AC đpcm
a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có
OC chung
góc AOC=góc BOC
=>ΔOAC=ΔOBC
b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có
CA=CB
góc ACD=góc BCE
=>ΔCAD=ΔCBE
=>CE=CD và AD=BE
c: Xét ΔOED có OA/AD=OB/BE
nên AB//ED
b nfghtghngjhjhjhjhjhjhjhjhjhjhjhjhjhjhfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgcj
Xét \(\Delta OAB\)và \(\Delta OAC\)có :
\(\widehat{OBA}=\widehat{OCA\left(=90^o\right)}\)
OA là cạnh chung
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(\Rightarrow\Delta OAB=\Delta OAC\left(ch-gn\right)\)
a: Sửa đề; AE vuông góc với Oy tại E, BF vuông góc với OA tại F
Xét ΔOEA vuông tại E và ΔOFB vuông tại F có
OA=OB
\(\widehat{EOA}\) chung
Do đó: ΔOEA=ΔOFB
b: Xét ΔBEA vuông tại E và ΔAFB vuông tại F có
BA chung
EA=FB
Do đó: ΔBEA=ΔAFB
Suy ra: \(\widehat{BAE}=\widehat{ABF}\)
a: Xét ΔOKB vuông tại K và ΔOHA vuông tại H có
OB=OA
\(\widehat{O}\) chung
Do đó: ΔOKB=ΔOHA
Suy ra: OK=OH
hay ΔOHK cân tại O
vì OA là tia phân giác của góc xOy
=>BOA=COA
+> TAM GIÁC OBA và tam giác OCA, có
OA : cạch chung
BOA=COA
=> TAM GIÁC OBA= TAM GIÁC OCA( 2 CẠNH GÓC VUÔNG)
=>BA = AC ( 2 CẠNH TƯƠNG ỨNG)
A B C x y O
Sai nha đề bài có cho OCA với OBA là 2 tam giác vuông đâu