Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Vì CE // OD (cùng vuông góc với OB) ⇒ ∠C1 = ∠O1 (so le trong)
+) Xét ΔOCE và ΔCOD có:
OC chung
∠C1 = ∠O1 ( chứng minh trên )
∠OEC = ∠ODC = 90º
Suy ra: ΔOCE = ΔCOD (cạnh huyền – góc nhọn) ⇒ CE = OD.
(h.114) Ta có CE = OD (câu a))
mà OD = DA (do D là trung điểm OA) nên CE = DA.
Xét ΔECD và ΔADC có:
CD chung
CE = DA( chứng minh trên)
∠(ECD) = ∠(CDA) = 90º
Do đó ΔECD = ΔADC (c.g.c)
⇒ ∠D1 = ∠C3 ⇒ CA // DE (hai góc so le trong bằng nhau).
CD là đường trung trực của OA ⇒ CO = CA (tính chất đường trung trực) (1) .
CE là đường trung trực của OB ⇒ CO = CB (tính chất đường trung trực) (2).
Từ (1) và (2) suy ra: CA = CB.
Cách 1: Theo câu d): CA // DE. Chứng minh tương tự: CB // DE.
Qua C ta có CA và CB cùng song song với DE nên theo tiên đề Ơ-clit: A, C, B thẳng hàng.
Cách 2. CO = CA ⇒ ΔOCA cân ⇒ đường cao CD là đường phân giác của góc OCA ⇒ ∠C2 = ∠C3 ⇒ ∠(OCA) = 2∠C2 .
Chứng minh tương tự: ∠C1 = ∠C4 ⇒ ∠(OCB) = 2∠C1.
Do đó:
∠(OCA) + ∠(OCB) = 2∠C2 + 2∠C1 = 2(∠C2 + ∠C1) = 2∠(ECD) = 2.90o = 180o.
Vậy A, C, B thẳng hàng.
c) Chứng minh CA = CB
- Vì C nằm trên đường trung trực của OA nên CA = CO (3)
- Vì C nằm trên đường trung trực của OB nên CB = CO (4)
Từ (3) và (4) suy ra: CA = CB (đpcm).
c) Chứng minh CA = CB
- Vì C nằm trên đường trung trực của OA nên CA = CO (3)
- Vì C nằm trên đường trung trực của OB nên CB = CO (4)
Từ (3) và (4) suy ra: CA = CB (đpcm).
CD // OE (cùng vuông góc OA) ⇒ ∠(BEC) = ∠(ECD) (so le trong)
Ta lại có ∠(BEC) = 90o nên ∠(ECD) = 90o.
Vậy CE ⊥ CD.