Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔOAI=ΔOBI
⇒OA=OB (2 cạnh tương ứng)
Mà AK = BM ⇒OK=OM
Xét ΔOKC và ΔOMC ta có:
OK = OM (cmt)
góc KOC = góc MOC (gt)
OC là cạnh chung
Vậy ΔOKC=ΔOMC(C-G-C)
⇒ ICK = ICM (2 góc tương ứng)
góc ICK + góc ICM = 1800 (2 góc kề bù)
⇒OC⊥MK
a) xét tam giác OBI vuông tại B và tam giác OAI vuông tại A có:
^AOI = ^BOI ( do ƠI là tia phân giác của goc xoy)
OI là cạnh chung
=> tg OBI = tg OAI ( cạnh huyền - góc nhọn)
xin lỗi nka, câu b và câu c mình ko biết làm
Mk giải câu a) nhé, do câu b) là vẽ hình, còn câu c) bn chờ mk suy nghĩ, hơi khó
Gọi Ot là tia p/g của g.xOy
Xét tg vuông OBI và tg vuông OAI có:
OI cạnh chung
g.BOI = g.AOI ( Ot là tia p/g của g.xOy)
=> tg OBI = tg OAI (cạnh huyền - góc nhọn)
P/s: sửa I là điểm chứ không phải là trung điểm
Hình tự vẽ :<
a) Xét \(\Delta\)AOI và \(\Delta\)BOI có:
IAO=IBO (=90o)
IO: chung
AOI=BOI (OI: p/g AOB)
\(\Rightarrow\Delta\)AOI=\(\Delta\)BOI (ch-gn)
\(\Rightarrow\)IA=IB (2 cạnh tương ứng)
b) Xét \(\Delta\)KOB và \(\Delta\)MOA có:
KBO=MAO (\(\Delta\)AOI=\(\Delta\)BOI)
OB=OA ( \(\Delta\)AOI=\(\Delta\)BOI)
O: chung
\(\Rightarrow\)\(\Delta\)KOB=\(\Delta\)MOA (g.c.g)
\(\Rightarrow\)OK=OM (2 cạnh tương ứng)
Ta có:
\(\hept{\begin{cases}OA+AK=OK\\OB+BM=OM\end{cases}}\)mà \(\hept{\begin{cases}OA=OB\\OK=OM\end{cases}}\)
\(\Rightarrow\)AK=BM
c) Ta có: OM=OK (cmt)
\(\Rightarrow\)\(\Delta\)KOM cân tại O
\(\Rightarrow\)OMK=OKM
Xét \(\Delta\)OCM và \(\Delta\)OCK có:
OMK=OKM (cmy)
OC: chung
COM=COK (OC: p/g MOK)
\(\Rightarrow\)\(\Delta\)OCM=\(\Delta\)OCK (g.c.g)
\(\Rightarrow\)OCM=OCK (2 góc tương ứng)
Mà OCM+OCK=180o (kề bù)
\(\Rightarrow\)OCM=OCK=180o:2=90o
\(\Rightarrow\)OC \(\perp\) MK
a: Xét ΔOAI vuông tại A và ΔOBI vuông tại B có
OI chung
\(\widehat{AOI}=\widehat{BOI}\)
Do đó: ΔOAI=ΔOBI
Suy ra: IA=IB
hay ΔIAB cân tại I
b: OA=8cm
=>SAOI=24(cm2)