Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có \(O_2=O_3\) ( Om p/g )
xOy = yOm ( Om p/g )
→ \(xOy-O_2=yOm-O_3\)
→ \(O_1=O_4\)
b) + Xét Δ ABO và Δ AB'O có : \(O_1=O_4\left(cmt\right)\)
\(\begin{cases}OA=OA'\\OB=OB'\end{cases}\left(gt\right)\)
Nên Δ ABO = Δ AB'O ( cgc ) → AB = AB'
Xét Δ AB'O = Δ A'BO có : xOt = zOy ( vì \(O_1=O_4\) )
\(\begin{cases}OA=OA'\\OB=OB'\end{cases}\left(gt\right)}\)
→ \(O_1+zOt=O_4+xOt\Rightarrow O_4+zOt\Rightarrow xOt=zOy\)
Nên Δ AB'O = Δ A'BO ( cgc ) → AB' = A'B
c) Ta có : OA =OA' ( gt ) → Δ OAA' cân tại O → góc OAA' = góc OA'A
Mà có : góc OAB' = góc OA'B → góc OAA' - góc OAB' = góc OA'A = góc OA'B
→ góc B'AA' = góc BA'A → Δ AIA' cân tại I → IA = IA'
Mà A'B = AB' → A'B - A'I = AB' - AI
→ IB = IB'
d) Xét Δ OBI và Δ OB'I có : OI chung
IB = IB' ( C/m c )
OB = OB' ( gt )
Nên Δ OBI = Δ OB'I ( ccc ) → góc BOI = B'OI
Mà OI nằm giữa Oz và Ot → OI là p/g góc zOt. Mà có Om cũng là p/g góc zOt .
→ \(I\in Om\) hay AB', A'B và Om đồng qui
x m z t y I A A' O B B' 1 2 3 4
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét 2 tam giác vuông OAC và tam giác OBD có:
OA = OB (gt)
O là góc chung
suy ra tam giác OAC = tam giác OBD (cạnh góc vuông - góc nhọn kề cạnh ấy)
b) Ta có : OD = OA + AD
OC = OB + BC
mà OD = OC (vì tam giác OAC = tam giác OBD)
OA = OB ( gt)
suy ra AD = BC
Xét 2 tam giác vuông ADI và tam giác BCI có:
AD = BC (cmt)
góc D = góc C (vì tam giác OAC = tam giác OBD)
suy ra tam giác ADI và tam giác BCI (cạnh goác vuông - góc nhọn kề cạnh ấy)
suy ra IA = IB (2 cạnh tương ứng)
c)Xét 2 tam giác vuông OAI và tam giác OBI có:
OI là cạnh chung
OA = OB (gt)
suy ra tam giác OAI = tam giác OBI (2 cạnh góc vuông)
suy ra góc O1 = góc O2 (2 góc tương ứng)
suy ra OI là tia phân giác của góc xOy
Cái chỗ A1, A2, B1, B2 bạn đừng kí hiệu vào bài làm nhé!
Mình nhầm tí!
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Xét ΔOAE và ΔOBF có:
+) OA = OB (GT)
+) O: góc chung.
+) ∠A = ∠B = 90o (gt)
⇒ ΔOAE = ΔOBF ( g.c.g )
⇒ AE = BF ( 2 góc tương ứng )
---
b/ Có:
+) ∠E = ∠F ( vì ΔOAE = Δ OBF ) (1)
+) ∠OAI = ∠OBI ( gt )
Mà: ∠OAI + ∠IAF = ∠OBI + ∠IBE = 180o( kề bù )
⇒ ∠IAF = ∠IBE. (2)
⇔ AF = BE. (3)
Từ (1), (2) và (3) ⇒ ΔAFI = ΔBEI ( g.c.g )
---
c/ Xét ΔAIO và ΔBIO có:
+) OA = OB ( gt )
+) I: cạnh chung.
+) AI = BI ( vì ΔAFI = ΔBEI )
⇒ ΔAIO = ΔBIO ( c.c.c )
⇒ ∠AOI = ∠BOI ( 2 cạnh tương ứng )
⇒ OI là phân giác của ∠AOB. ( đpcm )
~ Chúc bn hc tốt!^^ ~
![](https://rs.olm.vn/images/avt/0.png?1311)
mik biet moi i a) và b) thui
a) xét tam giác AOM và tam giác BOM ta có :
OA = OB ( GIẢ THIẾT )
góc AOM = góc MOB
OM là cạnh chung
=> tam giác AOM = tam giác BOM
b) từ a) => am = bm
Do đó: Δ A I O = Δ B I O (cạnh huyền – góc nhọn)
Suy ra OA = OB ; IA = IB (hai cạnh tương ứng)
+ Xét tam giác IAM vuông tại A và tam giác IBN vuông tại B có:
IA = IB (cmt)