Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O M N P Q A B x y 5 4 ?
a) Xét \(\Delta OMA,\Delta ONA\) có:
\(\widehat{MOA}=\widehat{NOA}\) (OA là tia phân giác của \(\widehat{O}\))
\(OA:Chung\)
\(\widehat{OMA}=\widehat{ONA}\left(=90^{^O}\right)\)
=> \(\Delta OMA=\Delta ONA\) (cạnh huyền - góc nhọn)
=> OM = ON (2 cạnh tương ứng)
Do đó : \(\Delta OMN\) cân tại O
=> đpcm
b) Xét \(\Delta MAP,\Delta NAQ\) có :
\(\widehat{AMP}=\widehat{ANQ}\left(=90^o\right)\)
\(MA=AN\) (\(\Delta OMA=\Delta ONA\)- câu a)
\(\widehat{MAP}=\widehat{NAQ}\) (đối đỉnh)
=> \(\Delta MAP=\Delta NAQ\left(g.c.g\right)\)
=> \(AP=AQ\) (2 cạnh tương ứng)
c) Ta có : \(\left\{{}\begin{matrix}OM=ON\left(\Delta OAM=\Delta OAN\right)\\MP=NQ\left(\Delta MAP=\Delta NAQ\right)\end{matrix}\right.\)
Lại có : \(\left\{{}\begin{matrix}M\in Ox\\N\in Oy\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}OP=OM+MP\\OQ=ON+NQ\end{matrix}\right.\)
Suy ra : \(OP=OQ\left(OM+MP=ON+NQ\right)\)
Xét \(\Delta OBP,\Delta OBQ\) có :
\(OP=OQ\left(cmt\right)\)
\(\widehat{POB}=\widehat{QOB}\) (cmt)
\(OB:chung\)
=> \(\Delta OBP=\Delta OBQ\left(c.g.c\right)\)
=> \(\widehat{OBP}=\widehat{OBQ}\) (2 góc tương ứng)
Mà : \(\widehat{OBP}+\widehat{OBQ}=180^o\left(kềbù\right)\)
=> \(\widehat{OBP}=\widehat{OBQ}=90^o\)
Xét \(\Delta OBP\) vuông tại B (\(\widehat{OBP}=90^o\)) có:
\(BP^2=OP^2-OB^2\) (Định lí PITAGO)
=> \(BP^2=5^2-4^2=9\)
=> \(BP=\sqrt{9}=3\left(cm\right)\)
Bạn tự vẽ hình nhé
a, Xét tam giác OBM và tam giác OAM có: góc BOM = AOM,OBM=OAM
Do đó : OMB=OMA
Xét tam giác OBM=tam giácOAM (c.g.c)
b,Ta có :tam giác OBM = tam giác OAM (ý a)
Do đó: OB=OA(2 cạnh tương ứng)
Nên:tam giác BOA cânt ại A
c, Ta có :tam giác OBM= tam giác OAM (ý a)
Do đó: MB=MA (2 cạnh tương ứng)
Xét tam giác MBE = tam giác MAD (g.c.g)
Do đó MD=ME (2 cạnh tương ứng )
d, Ta có :OE=OB+BE
và:OD=OA+AD
Mà : OA=OB(CMT);BE=AD(vì tam giác MBE = tam giác MAD )
Nên:OE=OD
Gọi OM cắt DE tại I
Xét tam giác DOI=tam giác EOI (c.g.c)
Do đó :OID = OIE (2 góc tương ứng)
Mà OID + OIE= 180 độ(kề bù)
Nên : OID = OIE = 90 độ
Do đó: OM vuông góc DE
Chỗ nào k hiểu nt hỏi mk nhé
x O y A B D E 1 2 M 1 2 I 1 2 1 1 2 2
a) Xét \(\Delta OMA\)và \(\Delta OMB\)có :
\(OM\)chung
\(\widehat{O_1}=\widehat{O_2}\)( vì OM là tia phân giác của \(\widehat{xOy}\))
=> \(\Delta OMA=\Delta OMB\)( cạnh huyền - góc nhọn )
=> \(MA=MB\)( hai cạnh tương ứng )
=> \(OA=OB\)( hai cạnh tương ứng )
b) Vì \(OA=OB\)=> \(\Delta OAB\)là tam giác cân tại O
c) ( Hình mình vẽ thiếu, bạn nhớ bổ sung nhé )
Ta có : \(MA\perp Ox\)=> \(\widehat{A_1}=\widehat{A_2}=90^0\)
Tương tự : \(MB\perp Ox\)=> \(\widehat{B_1}=\widehat{B_2}=90^0\)
Xét \(\Delta MAD\)và \(\Delta MBE\)có :
\(\widehat{A_2}=\widehat{B_2}\left(cmt\right)\)
\(MA=MB\left(gt\right)\)
\(\widehat{M_1}=\widehat{M_2}\left(dd\right)\)
=> \(\Delta MAD=\Delta MBE\left(g.c.g\right)\)
=> \(MD=ME\)( hai cạnh tương ứng )
=> \(AD=BE\)( hai cạnh tương ứng )
d) Nối D với E được đoạn thẳng DE cắt OM tại I
Ta có : \(OA+AD=OD\)
\(OB+BE=OE\)
mà \(OA=OB\), \(AD=BE\)
=> \(OD=OE\)
Xét \(\Delta OID\)và \(\Delta OIE\)ta có :
\(OD=OE\left(cmt\right)\)
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(OM\)chung
=> \(\Delta OID\) = \(\Delta OIE\)( c.g.c )
=> \(\widehat{I_1}=\widehat{I_2}\)( hai góc tương ứng ) ( 1 )
Ta có : \(\widehat{I_1}+\widehat{I_2}=180^0\)( 2 )
Từ ( 1 ) và ( 2 ) => \(\widehat{I_1}=\widehat{I_2}=\frac{180^0}{2}=90^0\)
=> \(OI\perp DE\)hay \(M\perp DE\)
* Ủng hộ nhé *
x y O I A B
gt : \(\widehat{xOy}< 90^{\text{o}}\), \(\widehat{xOI}=\widehat{Ioy}\), \(IA\perp Ox\), \(IB\perp Oy\).
kl : .
c/m : Xét AIO và BIO , có :
\(OI\) là cạnh chung
\(\widehat{xOI}=\widehat{IOy}\left(gt\right)\)
\(\Rightarrow\) AIO BIO (ch - gn)
\(\Rightarrow IA=IB\) (2 cạnh tương ứng) (đpcm)
< Em tự vẽ hình nhé! >
+, Xét tam giác IAO và tam giác IBO có :
IO chung
Góc AOI = Góc IOB ( vì OI là tia phân giác của góc xOy)
Góc IAO = Góc IOB = 90 độ (gt)
=> Tam giác IAO = tam giác IBO ( ch-gn)
=> IA = IB ( 2 cạnh tương ứng )
Hình: chắc bác cũng tự vẽ đc =.=
Xét \(\Delta OAC\)và \(\Delta OAB\)có:
\(\widehat{C}=\widehat{B}=90^o\)
\(\widehat{AOC}=\widehat{AOB}\)(gt) \(\Rightarrow\Delta OAC=\Delta OAB\)
OA chung (CH-GN)
=> OB= OC ( 2 cạnh tương ứng) (1)
Từ (1), ta có: \(\Delta BOC\)cân tại O
P/s: sửa I là điểm chứ không phải là trung điểm
Hình tự vẽ :<
a) Xét \(\Delta\)AOI và \(\Delta\)BOI có:
IAO=IBO (=90o)
IO: chung
AOI=BOI (OI: p/g AOB)
\(\Rightarrow\Delta\)AOI=\(\Delta\)BOI (ch-gn)
\(\Rightarrow\)IA=IB (2 cạnh tương ứng)
b) Xét \(\Delta\)KOB và \(\Delta\)MOA có:
KBO=MAO (\(\Delta\)AOI=\(\Delta\)BOI)
OB=OA ( \(\Delta\)AOI=\(\Delta\)BOI)
O: chung
\(\Rightarrow\)\(\Delta\)KOB=\(\Delta\)MOA (g.c.g)
\(\Rightarrow\)OK=OM (2 cạnh tương ứng)
Ta có:
\(\hept{\begin{cases}OA+AK=OK\\OB+BM=OM\end{cases}}\)mà \(\hept{\begin{cases}OA=OB\\OK=OM\end{cases}}\)
\(\Rightarrow\)AK=BM
c) Ta có: OM=OK (cmt)
\(\Rightarrow\)\(\Delta\)KOM cân tại O
\(\Rightarrow\)OMK=OKM
Xét \(\Delta\)OCM và \(\Delta\)OCK có:
OMK=OKM (cmy)
OC: chung
COM=COK (OC: p/g MOK)
\(\Rightarrow\)\(\Delta\)OCM=\(\Delta\)OCK (g.c.g)
\(\Rightarrow\)OCM=OCK (2 góc tương ứng)
Mà OCM+OCK=180o (kề bù)
\(\Rightarrow\)OCM=OCK=180o:2=90o
\(\Rightarrow\)OC \(\perp\) MK
a: Xét ΔOMA vuông tại M và ΔONA vuông tại N có
OA chung
\(\widehat{MOA}=\widehat{NOA}\)
Do đó: ΔOMA=ΔONA
Suy ra: OM=ON
hayΔOMN cân tại O
b: Xét ΔOMP vuông tại M và ΔONQ vuông tại N có
OM=ON
góc MOP chung
Do đo;s ΔOMP=ΔONQ
Suy ra: OP=OQ
hay MQ=NP
Xét ΔAMQ vuông tại M và ΔANP vuông tại N có
MA=NA
MQ=NP
Do đó; ΔAMQ=ΔANP
Suy ra: AP=AQ
c: \(BP=\sqrt{5^2-4^2}=3\left(cm\right)\)