Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x A O B y I D C
Bài làm
a) Xét tam giác OAI và tam giác OBI có:
\(\widehat{OAI}=\widehat{OBI}\)( Do tam giác OAB cân tại A lí do cân vì OA = OB )
OA = OB ( gt )
\(\widehat{AOI}=\widehat{BOI}\)( hai góc tạo bởi tia phân giác )
=> Tam giác OAI = tam giác OBI ( g.c.g )
=> \(\widehat{OIA}=\widehat{OIB}\)( hai góc tương ứng )
Ta có: \(\widehat{OIA}+\widehat{OIB}=180^0\)
=> \(\widehat{OIA}=\widehat{OIB}=\frac{180^0}{2}=90^0\)
=> OI vuông góc với AB
b) Xét tam giác OAB có:
OI vuông góc với AB
AD vuông góc với OB
Mà OI cắt AD ở C
=> C là giao điểm của 3 đường cao.
=> BC vuông góc OA
hay BC vuông góc với Ox.
c) Theo đề là OA = OB, nên sao OA - OB = 6 đc, hơi vô lí.
C1: a)Vì OA=OB
=>tam giác AOB cân tại O
Xét tam giác ABO có OI là tia phân giác đồng thời là đường cao
=>OI vuông góc với AB
b)
Xét tam giác OAC và tam giác OBC có:
OA=OB(gt)
góc AOC= góc BOC(OC là tia phân giác góc AOB
OC chung
=> tam giác AOC= tam giác BOC(c-c-c)
=>\(\widehat{OAC}=\widehat{OBC}=90độ\)(2 góc tương ứng)
Vậy BC vuông góc với Oy
C2:
a)Xét tam giác OAI và tam giác OBI có:
OA=OB
góc AOI=gócBOI(OI là tia phân giác góc AOB)
=>góc OIA= góc OIB=90độ(2 góc tương ứng)
=>OI vuông góc với BC
b)Xét tam giác AOC và tam giác BOC có:
OA=OB(gt)
góc AOC = góc BOC(OC là tia phân giác góc AOB)
OC chung
=>tam giác AOC=tam giác BOC(c-g-c)
=>góc OAC= góc OBC=90độ(2 góc tương ứng)
=>BC vuông góc với Oy
Nếu bạn học xong lớp 7 rồi thì làm cách 1 còn nếu bạn mới học lớp 7 thì làm theo cách 2 để giải chi tiết
hình tự kẻ nghen:3333
a) vì I thuộc tia phân giác của xOy=> I cách đều Ox và Oy => IA=IB, IK=IM
ta có IA+IM=IB+IK=> MA=BK
vì IA vuông góc với Ox tại A=> AKI+KIA=90 độ
vì IB vuông góc với Oy tại B=> BMI+MIB=90 độ
mà KIA=MIB( đối đỉnh)
=> AKI=BMI
xét tam giác OAM và tam giác OBK có
AKI=BMI(cmt)
AM=BK(cmt)
OAM=OBK(= 90 độ)
=> tam giác OAM= tam giác OBK( gcg)
=> OK=OM( hai cạnh tương ứng)
b Xét tam giác OAI và tam giác OBI có
OAI=OBI( =90 độ)
OI chung
O1=O2( gt)
=> tam giác OAI= tam giác OBI( ch-gnh)
=> OA=OB( hai cạnh tương ứng)
ta có OK-OA=OM-OB
=> AK=BM
c)Xét tam giác KOC và tam giác MOC có
OK=OM(cmt)
O1=O2(gt)
OC chung
=> tam giác KOC= tam giác MOC(cgc)
=> C1=C2( hai góc tương ứng)
mà C1+C2= 180 độ( kề bù)
=> C1=C2=90 độ=> OC vuông góc với MK