K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔOAB cân tại O

mà OM là trung tuyến

nên OM vuông góc AB và OM là phân giác của góc AOB

Xét ΔHAB có

HM vừa là đường cao, vừa là trung tuyến

=>ΔHAB cân tại H

=>HA=HB

b: Xét ΔOEK có AB//HK

nên OA/OE=OB/OK

mà OA=OB

nên OE=OK

=>ΔOEK cân tại O

mà OH là phân giác

nên H là trung điểm của KE

 

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.a, chứng minh tam giác AOM=tam giác BOMb. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BDc. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Otbài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm...
Đọc tiếp

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.

a, chứng minh tam giác AOM=tam giác BOM

b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD

c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot

bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng 

a. ON=OM và AN=BM

b. tia OH là tia phân giác của góc xOy

c. đường thẳng qua B // AC cắt tia DN tại N

chứng minh: tam giác ABM=tam giác CNM

0
28 tháng 12 2017

+) Xét tg ONB và OMA có
OB= OA (gt)
Góc O chung
Góc B = góc A(=90)
=> ∆ OMA (ch - gn)
=> />+) Ta có OA + AN = ON
OB+ BM= OM
Mà OA= OB
/>=> AN = BM
+) XÉT ∆OAH và ∆ OBH
OH cạnh cchung
OA= OB
góc A = góc B
=>∆ OAH= ∆ OBH( cho CGV)
=> AOH= BOH
=> OH là phân giác xOy

ta có (cmt)
=> ∆ ONM cân tại O
OI là trung tuyến => OI là đường cao
OI vuông góc NM(1)
Ta có MA, NB lần lượt vuông góc với Ox, Oy
MA cắt NB tại H
=> H là trực tâm của ∆OMN
=> OH vuông góc NM(2)
từ (1)(2)=> O , H , I thẳng hàng ( qua O chỉ kẻ đc duy nhất 1 đường thẳng vuông góc NM)

a) Xét ΔOHA và ΔOHB có

OA=OB(gt)

OH là cạnh chung

HA=HB(do H là trung điểm của AB)

Do đó: ΔOHA=ΔOHB(c-c-c)

b) Ta có: ΔOHA=ΔOHB(cmt)

\(\widehat{OHA}=\widehat{OHB}\)(hai góc tương ứng)

\(\widehat{OHA}+\widehat{OHB}=180^0\)

nên \(\widehat{OHA}=\widehat{OHB}=\frac{180^0}{2}=90^0\)

⇒OH⊥AB

hay MH⊥AB

Xét ΔMAB có

MH là đường cao ứng với cạnh AB(do MH⊥AB)

MH là đường trung tuyến ứng với cạnh AB(do H là trung điểm của AB)

Do đó: ΔMAB cân tại M(định lí tam giác cân)

⇒AM=MB(đpcm)

c)Ta có: OH⊥AB(cmt)

AB//EK(gt)

Do đó: OH⊥EK(định lí 2 về quan hệ giữa vuông góc và song song)

mà M∈OH(gt)

nên OM⊥EK

Ta có: ΔOHA=ΔOHB(cmt)

\(\widehat{AOH}=\widehat{BOH}\)(hai góc tương ứng)

mà tia OH nằm giữa hai tia OB,OA

nên OH là tia phân giác của \(\widehat{AOB}\)

hay OM là tia phân giác của \(\widehat{KOE}\)

Xét ΔKOE có

OM là đường cao ứng với cạnh KE(do OM⊥KE)

OM là đường phân giác ứng với cạnh KE(do OM là tia phân giác của \(\widehat{KOE}\))

Do đó: ΔKOE cân tại O(định lí tam giác cân)

⇒OK=OE

Xét ΔOMK vuông tại M và ΔEOM vuông tại M có

OK=OE(cmt)

OM là cạnh chung

Do đó: ΔOMK=ΔEOM(cạnh huyền-cạnh góc vuông)

⇒KM=ME(hai cạnh tương ứng)

hay M nằm trên đường trung trực của KE(tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OK=OE(cmt)

⇒O nằm trên đường trung trực của KE(tính chất đường trung trực của một đoạn thẳng)(2)

Từ(1) và (2) suy ra OM là đường trung trực của KE(đpcm)