Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(sin^2a+cos^2a=1\Leftrightarrow sin^2a+\left(\frac{1}{3}\right)^2=1\Leftrightarrow sin^2a=\frac{8}{9}\Rightarrow sina=\frac{2\sqrt{2}}{3}.\)
\(B=\frac{sin\alpha-3cosa}{sina+2cosa}=\frac{\frac{2\sqrt{2}}{3}-3.\frac{1}{3}}{\frac{2\sqrt{2}}{3}+2.\frac{1}{3}}=\frac{7-5\sqrt{2}}{2}\)
a: \(0< \sin x< 1\)
nên \(\sin x-1< 0\)
b: \(0< \cos x< 1\)
nên \(1-\cos x>0\)
\(\sin^4\alpha+\cos^4\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha.\cos^2\alpha=1-2.\frac{1}{4^2}=\frac{7}{8}\)
Có: \(1=\sin^2x+\cos^2x\ge2\sin x.\cos x\)\(\Leftrightarrow\)\(\sin x.\cos x\le\frac{1}{2}\)
\(M=\frac{1}{3\left(\frac{1}{\sin x}+\frac{1}{\cos x}\right)+\frac{2}{\sin x.\cos x}}\le\frac{1}{\frac{6}{\sqrt{\sin x.\cos x}}+\frac{2}{\sin x.\cos x}}\le\frac{1}{\frac{6}{\sqrt{\frac{1}{2}}}+\frac{2}{\frac{1}{2}}}=\frac{1}{6\sqrt{2}+4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{\sin x}=\frac{1}{\cos x}\\\sin^2x+\cos^2x=1\end{cases}}\Leftrightarrow\sin x=\cos x=\frac{1}{\sqrt{2}}\)\(\Rightarrow\)\(x=45^0\)
a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)
\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)
\(=\left(1-sin^2a\right)-sin^2a=1\)
b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)
\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2-sin^2a-cos^2a=2-1=1\)
Ta có : sin x =3/5 suy ra 5sin x = 3
25sin2x=9
25(1-cos2)=9
25cos2=16
5cos x =4
cos x = 4/5 . (1)
Thay (1) và sin x =3/5 vào M , ta được :
M=29/5