K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔOIC vuông tại I và ΔOID vuông tại I có

OI chung

\(\widehat{COI}=\widehat{DOI}\)

Do đó: ΔOIC=ΔOID

Suy ra: IC=ID

hay I là trung điểm của CD

2: Xét ΔOIA vuông tại A và ΔOIB vuông tại B có

OI chung

\(\widehat{AOI}=\widehat{BOI}\)

Do đó: ΔOIA=ΔOIB

Suy ra: IA=IB

22 tháng 1 2015

O x y z t A D B C I

Xét tam giác ODB và tam giác OAC có: OD = OA

                                                          góc AOC = góc BOD (=90o)

                                                          OB = OC

=> tam giác ODB = tam giác OAC (c.g.c)=> AC = BD (2 cạnh t,ư )

b/Ta có góc DOC + COB = zOx = 90o

                  AOB + BOC = tOy = 90o

=> góc DOC = AOB mà OD =OA, OC = OB 

=> tam giác ODC = OAB (c.g.c) => DC = AB            (1)

Dễ có tam giác DCB =  ABC (Vì BC chung, DC=AB,DB =AC )

=> góc CDB = CAB (2 góc t.ư)                       (2)

Dễ có tam giác CDA = BAD (vì AD chung, CD = AB, DB =AC  ) => góc DCA = góc DBA (2 góc t.ư)           (3)

Từ (1)(2)(3) => tam giác IDC =IAB (g.c.g)

=> ID = IA, IC = IB (cặp canh tương ứng )

Dễ có tam giác OIC = OIB (c.c.c)

=> góc COI = góc BOI (2 góc t.ư)

=> tia OI là phân giác của góc xOy

               

Bài 1: Cho Ot là tia phân giác của góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ot lấy điểm M sao cho OM>OA.a)CM: ΔAOM=ΔBOMb)Gọi C lá giao điểm của tia AM và tia Oy.D lá trung điểm của BM và Ox. CMR:AC=BDc) Nối A và B, vẽ đường thẳng d vuông góc với ABtại A.CM: d // OtBài2: Cho góc nhọn xOy.Lấy điểm A thuộc tia Ox ,lấy điểm B thuộc tia Oy sao cho OA=OB.Qua A kẻ đường...
Đọc tiếp

Bài 1: Cho Ot là tia phân giác của góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ot lấy điểm M sao cho OM>OA.

a)CM: ΔAOM=ΔBOM

b)Gọi C lá giao điểm của tia AM và tia Oy.D lá trung điểm của BM và Ox. CMR:AC=BD

c) Nối A và B, vẽ đường thẳng d vuông góc với ABtại A.CM: d // Ot

Bài2: Cho góc nhọn xOy.Lấy điểm A thuộc tia Ox ,lấy điểm B thuộc tia Oy sao cho OA=OB.Qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M, qua B vuông góc với Oy cắt Ox tại N. GọiH là giao điểm của AM và BM,I là trung điểm của MN.CMR:

a) ON=OM và AN=BM

b)Tia OH là tia phân giác góc xOy

c) Ba tia điểm O,H,I thẳng hàng

Bài3: Cho ΔABC vuông góc tại A.Gọi M là trung điểm của AC, trên tia đối của tia MB lấy điểm D sao cho MD=MB

a) CM: AD=BC

b) CM: CD vuông góc với AC

c) Đường thẳng qua B song song với AC cắt tia DC tại N. CM:Δ ABM= ΔCNM

1

Bài 3: 

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD=BC

b: Ta có: ABCD là hình bình hành

nên CD//AB

mà AB⊥AC

nên CD⊥AC

c: Xét tứ giác ABNC có 

AB//NC

BN//AC

Do đó: ABNC là hình bình hành

Suy ra: AB=CN

Xét ΔBAM vuông tại A và ΔNCM vuông tại C có

MA=MC

BA=NC

Do đó: ΔBAM=ΔNCM

15 tháng 11 2016

Ta có hình vẽ:

x O y t A B H C D K' K a) Vì Ot là phân giác của góc xOy nên \(xOt=yOt=\frac{xOy}{2}\)

Xét Δ AHO và Δ BHO có:

AOH = BOH (cmt)

OH là cạnh chung

AHO = BHO = 90o

Do đó, Δ AHO = Δ BHO (g.c.g) (đpcm)

b) Δ AHO = Δ BHO (câu a)

=> OA = OB (2 cạnh tương ứng)

Gọi K' là giao điểm của AD và BC

Xét Δ AOK' và Δ BOK' có:

OA = OB (cmt)

AOK' = BOK' ( câu a)

OK' là cạnh chung

Do đó, Δ AOK' = Δ BOK' (c.g.c)

=> AK' = BK' (2 cạnh tương ứng); OAK' = OBK' (2 góc tương ứng)

Lại có: OAK' + K'AC = 180o (kề bù) (1)

OBK' + K'BD = 180o (kề bù) (2)

Từ (1) và (2) => K'AC = K'BD

Xét Δ K'AC và Δ K'BD có:

AC = BD (gt)

K'AC = K'BD (cmt)

AK' = BK' (cmt)

Do đó, Δ K'AC = Δ K'BD (c.g.c)

=> K'C = K'D (2 cạnh tương ứng)

Mà AK' = BK' (cmt) => AK' + K'D = BK' + K'C

=> AD = BC (đpcm)

c) Đầu tiên ta đi chứng minh 3 điểm O, H, K' thẳng hàng (bn tự chứng minh)

Δ AOK' = BOK' (câu b)

=> AK'O = BK'O (2 góc tương ứng) (*)

Δ K'AC = Δ K'BD (câu b)

=> AK'C = BK'D (2 góc tương ứng) (**)

Ta có: AK'O + AK'C + CK'K = 180o

BK'O + BK'D + DK'K = 180o

Kết hợp với (*) và (**) => CK'K = DK'K

Δ OK'C và Δ OK'D có:

OK' là cạnh chung

COK' = DOK' (câu a)

OC = OD (vì OA = OB; AC = BD)

Do đó, Δ OK'C = Δ OK'D (c.g.c)

=> K'C = K'D (2 cạnh tương ứng)

Xét Δ CK'K và Δ DK'K có:

CK' = DK' (cmt)

CK'K = DK'K (cmt)

K'K là cạnh chung

Do đó, Δ CK'K = Δ DK'K (c.g.c)

=> CKK' = DKK' (2 góc tương ứng)

Mà CKK' + DKK' = 180o (kề bù) nên CKK' = DKK' = 90o

=> \(KK'\perp CD\)

\(KK'\perp AB\) do \(Ot\perp AB\) nên AB // CD (đpcm)

15 tháng 11 2016

Thanks, mik làm được rồi.....

23 tháng 3 2018

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.a, chứng minh tam giác AOM=tam giác BOMb. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BDc. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Otbài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm...
Đọc tiếp

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.

a, chứng minh tam giác AOM=tam giác BOM

b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD

c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot

bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng 

a. ON=OM và AN=BM

b. tia OH là tia phân giác của góc xOy

c. đường thẳng qua B // AC cắt tia DN tại N

chứng minh: tam giác ABM=tam giác CNM

0