\(G=\frac{5}{3}+\frac{8}{3^2}+\frac{11}{3^3}+...+\frac{302}{3^{100}}.CMR:2\frac{5}{9}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2015

bạn có: 3G = (5 + 8/3) + (11/3^2 + 14/3^3 + ... + 299/3^98 + 302/3^99)
              G = 5/3 + (8/3^2 + 11/3^3 + .... + 296/3^98 + 299/3^99 + 302/3^100)
bạn có 3G - G = 5 + 8/3 - 5/3 + (11/3^2 - 8/3^2) + (14/3^3 - 11/3^3) + .... + (299/3^98 - 296/3^98) + (302/3^99 - 299/3^99) - 302/3^100
hay 2G = 5 +8/3 - 5/3 + (3/3^2 + 3/3^3 + ... + 3/3^98 + 3/3^99) - 302/3^100 
       2G = 6 + (1/3 + 1/3^2 +... + 1/3^97 + 1/3^98)

đặt H = 1/3 + 1/3^2 + ... + 1/3^97 + 1/3^98
 suy ra ta có 3H = 1 + 1/3 + .... + 1/3^96 + 1/3^97
3H - H = 1 - 1/3^98 hay 2H = 1 - 1/3^98

ở trên bạn có:
2G = 6 + (1/3 + 1/3^2 +... + 1/3^97 + 1/3^98)
hay 2G = 6 + H
hay 4G = 12 + 2H
hay 4G = 12 + 1 - 1/3^98
hay G = 13/4 - (1/3^98)/4
tìm được giá trị của G rồi thì bạn dễ dàng tìm được các bước tiếp theo thôi :D, sr vì tớ lười :D

17 tháng 5 2020

hn hỏi CM chứ cs phải tìm giá trị của G đâu

21 tháng 7 2019

#)Giải :

Bài 1 :

\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\Leftrightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)

\(\Leftrightarrow3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(\Leftrightarrow2C=1-\frac{1}{3^{100}}\Leftrightarrow C=\frac{1-\frac{1}{3^{100}}}{2}< \frac{1}{2}\Rightarrow C< \frac{1}{2}\left(đpcm\right)\)

Bài 2 : 

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\left(1-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{16}\right)+...+\left(\frac{1}{81}-\frac{1}{100}\right)=1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

25 tháng 7 2017

kết quả là 3 chấm hỏi chấm

26 tháng 7 2017

C=1+3+32+.............+3100

C=\(\frac{3C-C}{2}\)

3C=3+32+33+.............+399+3100+3101

C=1+3+32+..................+399+3100

3C-C=(3+32+33+.............+399+3100+3101)-(1+3+32+..................+399+3100

Triệt tiêu các số hạng co giá trị tuyệt đối  bằng nhau, ta được:

2C=-1+3100

\(\Rightarrow C=\frac{3^{100}-1}{2}\)

D=\(\frac{2D+D}{3}\)

2D=2101-2100+299-298+..............+23-22

D=2100-299+298-297+............+22-2

2D+D=2101-2100+299-298+..............+23-22+2100-299+298-297+............+22-2

Triệt tiêu các số hạng có giá trị tuyệt đối  bằng nhau, ta được:

3D=2101-2

\(\Rightarrow D=\frac{2^{101}-2}{3}\)

B=\(\frac{3}{1\times4}+\frac{5}{4\times9}+\frac{7}{9\times16}+.........+\frac{19}{81\times100}\)

Quan sát biểu thức, ta có nhận xét:

4-1=3;

9-4=5;

16-9=7;

.......;100-81=19

=> Hiệu hai số ở mẫu bằng giá trị ở tử

\(\Rightarrow B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+.......+\frac{1}{81}-\frac{1}{100}\)

\(\Rightarrow B=1-\frac{1}{100}\)

\(B=\frac{99}{100}< \frac{100}{100}\)

Vậy B<1