Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(0) = a . 0 + b = b
f(f(0)) = f(b) = a . b + b = ab + b
f(f(f(0))) = f(ab + b) = a . (ab + b) + b = a2b + ab + b
f(1) = a . 1 + b = a + b
f(f(1)) = f(a + b) = a . (a + b) + b = a2 + ab + b
f(f(f(1))) = f(a2 + ab + b) = a . (a2 + ab + b) + b = a3 + a2b + ab + b
a3 + a2b + ab + b = 29
a2b + ab + b = 2
=> (a3 + a2b + ab + b) - (a2b + ab + b) = 29 - 2
a3+ a2b + ab + b - a2b - ab - b = 27
a3 = 33
a = 3
\(f\left(-2\right)=4a-2b+c\)
\(f\left(3\right)=9a+3b+c\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=0\)
Tích 2 số đối nhau bé hơn hoặc bằng 0
=>dpcm 😀
nhờ bạn giúp mình giải bài với....!
Cho tam giác ABC nhọn (AB<AC). Các đường cao AE,BF cắt nhau tại H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng vuông góc với HM , a cắt AB,AC lần lượt tại I,K. gọi G là giao điểm cuarCH và AB. chứng minh:\(\frac{AH}{HE}+\frac{BH}{HF}+\frac{CH}{HG}< 6\)
giúp mình với nha! càng nhanh càng tốt bạn nhé! cảm ơn trước vậy.....
Lời giải:
Theo bài ra ta có:
\(\left\{\begin{matrix} f(0)=c\in\mathbb{Z}(1)\\ f(1)=a+b+c\in\mathbb{Z}(2)\\ f(2)=4a+2b+c\in\mathbb{Z}(3)\end{matrix}\right.\)
Từ $(1);(2)\Rightarrow a+b\in\mathbb{Z}$
$\Rightarrow 2a+2b\in\mathbb{Z}(4)$
Từ $(1);(3)\Rightarrow 4a+2b\in\mathbb{Z}(5)$
Từ $(4);(5)\Rightarrow 2a\in\mathbb{Z}(6)$
Từ $(4);(6)\Rightarrow 2b\in\mathbb{Z}$
Vậy ta có đpcm.
\(f\left(0\right)=b;f\left(b\right)=ab+b;f\left(f\left(b\right)\right)=a^2b+b=2\)
\(f\left(1\right)=a+b;f\left(f\left(1\right)\right)=a\left(a+b\right)+b;f\left(f\left(f\left(1\right)\right)\right)=a\left(a\left(a+b\right)\right)+b=29\)
\(\hept{\begin{cases}a^2b+b=2\\a^3+a^2b+b=29\end{cases}}\Rightarrow a^3=27\Rightarrow\hept{\begin{cases}a=3\\b=\frac{1}{5}\end{cases}}\Rightarrow f\left(x\right)=3x+\frac{1}{5}\)
ngonhuminh làm sai mà vẫn cho là đúng???
Cẩn thận \(f\left(f\left(f\left(1\right)\right)\right)=f\left(f\left(a+b\right)\right)=f\left(a\left(a+b\right)+b\right)=a\left[a\left(a+b\right)+b\right]+b\)