Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(f\left(x\right)=\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}\)= \(\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right)\left(\sqrt{x+1}+\sqrt{x-1}\right)}{\left(\sqrt{x+1}-\sqrt{x-1}\right)\left(\sqrt{x+1}+\sqrt{x-1}\right)}\)=\(\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{x+1-\left(x-1\right)}\)
= \(\frac{x+1+x-1+2\sqrt{\left(x-1\right)\left(x+1\right)}}{2}\)= \(\frac{2x+2\sqrt{x^2-1}}{2}\)=\(x+\sqrt{x^2-1}\)
Với a= \(\sqrt{3}\)=> \(f\left(\sqrt{3}\right)=\sqrt{3}+\sqrt{\left(\sqrt{3}\right)^2-1}\)=\(\sqrt{3}+\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(f\left(x\right)=\frac{2+\sqrt{4+4x}}{2x+2}+\frac{2+\sqrt{4-4x}}{2x-2}\)
\(\Rightarrow f\left(\frac{\sqrt{3}}{2}\right)=\frac{2+\sqrt{4+2\sqrt{3}}}{\sqrt{3}+2}+\frac{2+\sqrt{4-2\sqrt{3}}}{\sqrt{3}-2}\)
\(=\frac{2+\sqrt{3}+1}{\sqrt{3}+2}+\frac{2+\sqrt{3}-1}{\sqrt{3}-2}=\frac{\left(\sqrt{3}+3\right)\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-\frac{\left(\sqrt{3}+1\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=3-\sqrt{3}-3\sqrt{3}-5=-2-4\sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = \(x^2+3x-7=x^2+2x\frac{3}{2}+\frac{9}{4}-\frac{37}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{37}{4}\ge-\frac{37}{4}\)
\(\Rightarrow\)min A = \(-\frac{37}{4}\Leftrightarrow x=-\frac{3}{2}\)
B = \(x-5\sqrt{x}-1\) ĐKXĐ: \(x\ge0\)
\(=x-2\sqrt{x}\frac{5}{2}+\frac{25}{4}-\frac{29}{4}=\left(\sqrt{x}-\frac{5}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)
\(\Rightarrow\)min B = \(-\frac{29}{4}\Leftrightarrow x=\frac{25}{4}\)( thỏa mãn)
C = \(\frac{-4}{\sqrt{x}+7}\) ĐKXĐ:\(x\ge0\)
Ta có: \(\sqrt{x}+7\ge7\Rightarrow\frac{4}{\sqrt{x}+7}\le\frac{4}{7}\)\(\Leftrightarrow\frac{-4}{\sqrt{x}+7}\ge-\frac{4}{7}\)
\(\Rightarrow\)min C = \(-\frac{4}{7}\Leftrightarrow x=0\)
D = \(\frac{\sqrt{x}+1}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)
\(=1-\frac{2}{\sqrt{x}+3}\ge1-\frac{2}{3}=\frac{1}{3}\)
\(\Rightarrow\)min D = \(\frac{1}{3}\Leftrightarrow x=0\)
E = \(\frac{x+7}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)
\(=\frac{x-9+16}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+16}{\sqrt{x}+3}=\sqrt{x}-3+\frac{16}{\sqrt{x}+3}=\sqrt{x}+3+\frac{16}{\sqrt{x}+3}-6\ge2\sqrt{16}-6=2\)
\(\Rightarrow\)min E = \(2\Leftrightarrow x=1\)(thỏa mãn)
F = \(\frac{x^2+3x+5}{x^2}\) ĐKXĐ: \(x\ne0\)
\(\Leftrightarrow\)\(x^2\left(F-1\right)-3x-5=0\)
△ = \(3^2+20\left(F-1\right)\ge0\)\(\Leftrightarrow F\ge\frac{11}{20}\)
\(\Rightarrow\)min F = \(\frac{11}{20}\Leftrightarrow x=-\frac{10}{3}\)( thỏa mãn)