\(5x^3-7x^2+x+7\)           ;        h(x)=\(2x^3+4x+1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

mn ơi giúp mk vs

3 tháng 8 2018

\(\Leftrightarrow\left(x+1\right)\left[-4x\left(x-4\right)+2\left(x-4\right)\right]=3\)

a/ Ta có:

\(m\left(x\right)=3h\left(x\right)-2f\left(x\right)\)

\(\Leftrightarrow m\left(x\right)=3\left(2x^3+4x+1\right)-2\left(5x^3-7x^2+x+7\right)\)

\(\Leftrightarrow m\left(x\right)=6x^3+12x+3-10x^3+14x^2-2x-14\)

\(\Leftrightarrow m\left(x\right)=-4x^3+14x^2+10x-11\)

b/ Vì nghiệm của đa thức là giá trị làm cho đa thức bằng 0 nên ta có:

\(m\left(x\right)=0\)

\(\Leftrightarrow-4x^3+14x^2+10x-11=0\)

\(\Leftrightarrow-4x^3+14x^2+10x-8-3=0\)

\(\Leftrightarrow\left(x+1\right)\left(-4x^2+18x-8\right)=3\)

TH1\(\hept{\begin{cases}x+1=3\\-4x^2+18x-8=1\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=2\\x_2=3.927...\end{cases}}}\)( Loại , vì \(x_1\ne x_2\))

TH2: \(\hept{\begin{cases}x+1=1\\-4x^2+18x-8=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=0\\x_2=3.770...\end{cases}}\)( Loại )

TH3\(\hept{\begin{cases}x+1=-1\\-4x^2+18x-8=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=-2\\x_2=0.297...\end{cases}}}\)( Loại )

TH4\(\hept{\begin{cases}x+1=-3\\-4x^2+18x-8=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=-4\\x_2=0.429...\end{cases}}}\)( Loại )

Vậy đa thức m(x) vô nghiệm.

7 tháng 4 2019

a) \(f\left(x\right)=5x^3-7x^2+x+7+4x^5\)

\(f\left(-1\right)=5.\left(-1\right)^3-7.\left(-1\right)^2+\left(-1\right)+7+4.\left(-1\right)^5\)

\(f\left(-1\right)=\left(-5\right)-7+\left(-1\right)+7+\left(-4\right)\)

\(f\left(-1\right)=-10\)

\(\Rightarrow f\left(x\right)=-10\)

\(g\left(x\right)=4x^5-3x^3-7x^2+2x+5\)

\(g\left(0\right)=4.0^5-3.0^3-7.0^2+2.0+5\)

\(g\left(0\right)=5\)

\(\Rightarrow g\left(x\right)=0\)

\(h\left(x\right)=x^2-4x-5\)

\(h\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^2-4.\left(-\frac{1}{2}\right)-5\)

\(h\left(-\frac{1}{2}\right)=\frac{1}{4}-\left(-2\right)-5\)

\(h\left(-\frac{1}{2}\right)=-\frac{11}{4}\)

\(\Rightarrow h\left(x\right)=-\frac{11}{4}\)

7 tháng 4 2019

\(f\left(-1\right)=5\left(-1\right)^3-7\left(-1\right)^2+\left(-1\right)+7+4\left(-1\right)^5\)

\(f\left(-1\right)=-5-7-1+7-4\)

\(f\left(-1\right)=-10\)

\(g\left(0\right)=4.0^5-3.0^3-7.0^2+2.0+5\)

\(g\left(0\right)=0-0-0+0+5\)

\(g\left(0\right)=5\)

\(h\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^2-4\left(-\frac{1}{2}\right)-5\)

\(h\left(-\frac{1}{2}\right)=\frac{1}{4}-\left(-2\right)-5\)

\(h\left(-\frac{1}{2}\right)=\frac{1}{4}+2-5\)

\(h\left(-\frac{1}{2}\right)=-\frac{11}{4}\)

15 tháng 5 2017

a) Thu gọn, sắp xếp các đa thức theo lũy thừa tăng của biến

f(x)=x2+2x37x596x7+x3+x2+x54x2+3x7

= -9 - 2x2 + 3x3 - 6x5 - 3x7

g(x)=x5+2x35x8x7+x3+4x25x7+x44x2x612

= -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8

h(x)=x+4x55x6x7+4x3+x22x7+x64x27x7+x

= 2x - 3x2 + 4x3 +4x5 -4x6 - 10x7

b) Tính f(x) + g(x) h(x) = ( -9 - 2x2 + 3x3 - 6x5 - 3x7 ) + (-12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 ) - (2x - 3x2 + 4x3 +4x5 -4x6 - 10x7)

= - 9 - 2x2 + 3x3 - 6x5 - 3x7 -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 - 2x + 3x2 - 4x3 - 4x5 + 4x6 + 10x7

= -21 - 2x + x2 + 2x3 + x4 - 9x5 + 3x6 + x7 - 5x8

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

13 tháng 8 2017

1.a. \(3^2-2x-5=0\Rightarrow-2x=0-9+5=-4\)

\(\Rightarrow-x=-\dfrac{4}{2}=-2\Rightarrow x=2\)

Vậy x nghiệm của đa thức \(3^2-2x-5\) là 2

b. \(x^2-5x+4=0\Rightarrow x=\dfrac{-\left(-5\right)\pm\sqrt{\left(-5\right)^2-4\cdot1\cdot4}}{2\cdot1}=\dfrac{5\pm\sqrt{25-16}}{2}=\dfrac{5\pm\sqrt{9}}{2}=\dfrac{5\pm3}{2}=\left[{}\begin{matrix}\dfrac{5+3}{2}=\dfrac{8}{2}=4\\\dfrac{5-3}{2}=\dfrac{2}{2}=1\end{matrix}\right.\)

Vậy nghiệm của đa thức \(x^2-5x+4\) là 1 hoặc 4

c. \(x^2+4x+7=0\Rightarrow x=\dfrac{-4\pm\sqrt{4^2-4\cdot1\cdot7}}{2\cdot1}=\dfrac{-4\pm\sqrt{16-28}}{2}=\dfrac{-4\pm\sqrt{-12}}{2}\Rightarrow x\notin Z\)

Vậy \(x\notin Z\)

2.a. \(P\left(x\right)=3\cdot x^4-x^3+4x^2+2x+1=3x^4-x^3+4x^2+2x+1\)

\(P\left(x\right)+Q\left(x\right)=\left(3x^4-x^3+4x^2+2x+1\right)+\left(-2x^4-x^2+x-2\right)\)

\(=3x^4-x^3+4x^2+2x+1-2x^4-x^2+x-2\)

\(=x^4-x^3+3x^2+3x-1\)

Vậy \(P\left(x\right)+Q\left(x\right)=x^4-x^3+3x^2+3x-1\)

b. \(Q\left(x\right)-H\left(x\right)=-2x^4-2\)

\(\Rightarrow-H\left(x\right)=-2x^4-2-Q\left(x\right)\)

\(\Rightarrow-H\left(x\right)=-2x^4-2-\left(-2x^4-x^2+x-2\right)\)

\(\Rightarrow-H\left(x\right)=-2x^4-2+2x^4+x^2-x+2\)

\(\Rightarrow-H\left(x\right)=x^2-x\Rightarrow H\left(x\right)=-x^2+x\)

Vậy \(H\left(x\right)=x^2+x\)

c. \(H\left(x\right)=0\Rightarrow x^2+x=0\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy nghiệm của đa thức H(x) là 0 hoặc -1

6 tháng 6 2018

Giải:

a) \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

\(\Leftrightarrow h\left(x\right)=9-x^5+4x-2x^3+x^2-7x^4+x^5-9+2x^2+7x^4+2x^3-3x\)

\(\Leftrightarrow h\left(x\right)=x+3x^2\)

b) Để đa thức h(x) có nghiệm

\(\Leftrightarrow h\left(x\right)=0\)

\(\Leftrightarrow x+3x^2=0\)

\(\Leftrightarrow x\left(1+3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy ...

Sắp xếp A(x)=\(2x^5+x^3+x^2-7x-9\)

B(x)=\(x^4+4x^3+4x^2+5x+11\)

b,M(x)= \(2x^5+x^4+5x^3+5x^2-2x+2\)

N(x)=\(2x^5-x^4-3x^3-3x^2-12x-20\)

c, Thay x=2 vào N(x) ta được

N(2)=0 Vậy 2 là nghiệm của đt N(x)

Thay x=2 vào M(x) ta được 

M(2)=.... \(\ne\)0(tự tính nha)

Vậy.............

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Lời giải:

a)

$M(x)=(x^5+5x^5)-2x^4-4x^3+3x$

$=6x^5-2x^4-4x^3+3x$

$N(x)=-6x^5+(7x^4-5x^4)+(x^3+3x^3)+4x^2-3x-1$

$=-6x^5+2x^4+4x^3+4x^2-3x-1$

b)

$M(-1)=6(-1)^5-2(-1)^4-4(-1)^3+3(-1)=-7$

$N(-2)=-6(-2)^5+2(-2)^4+4(-2)^3+4(-2)^2-3(-2)-1$

$=213$

c)

$M(x)+N(x)=(6x^5-2x^4-4x^3+3x)+(-6x^5+2x^4+4x^3+4x^2-3x-1)$

$=4x^2-1$

$M(x)-N(x)=(6x^5-2x^4-4x^3+3x)-(-6x^5+2x^4+4x^3+4x^2-3x-1)$

$=12x^5-4x^4-8x^3-4x^2+6x+1$

d)

$F(x)=M(x)+N(x)=4x^2-1=0\Leftrightarrow x^2=\frac{1}{4}$

$\Leftrightarrow x=\pm \frac{1}{2}$

Vậy $x=\pm \frac{1}{2}$ là nghiệm của $F(x)$