Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt f(x) = 0, ta có:
f(x) = 2x2 - x = 0
=> x(2x - 1) = 0
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy nghiệm của f(x) là x = 0 hoặc \(x=\dfrac{1}{2}\)
b) f(x) + g(x) = (2x2 - x) + (mx2 + 2mx + 1)
= 2x2 - x + mx2 + 2mx + 1
= x(2x - 1) + x(mx + 2m) + 1
Thay x = 2 vào đa thức f(x) + g(x), ta có:
f(2) + g(2) = 2(2 . 2 - 1) + 2(2m + 2m) + 1
= 2 . 5 + 2 . 4m + 1
= 10 + 8m + 1
= 11 + 8m
Đặt f(2) + g(2) = 0, ta có:
f(2) + g(2) = 11 + 8m = 0
=> 8m = -11
\(\Rightarrow m=-\dfrac{11}{8}\)
Vậy \(m=-\dfrac{11}{8}\)
a) f(x)+g(x)=(2x2-x+3)+(x2-3)
=2x2-x+3+x2-3
=(2x2+x2)-x+(3+-3)
=3x2-x
=>h(x)=3x2-x
b) f(x)-g(x)=(2x2-x+3)-(x2-3)
=2x2-x+3-x2+3
=(2x2-x2)-x+(3+3)
=x2-x+6
=>q(x)=x2-x+6
c)Ta có:h(x)=0 =>3x2-x =0
=>3xx-x =0
=>x(3-1)x =0
=>2xx =0
=>x2 =0
=>x =0
vậy nghiệm của h(x) là 0
\(a,h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(=2x^2-x+3+x^2-3\)
\(=3x^2-x\)
\(q\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(=2x^2-x+3-x^2+3\)
\(=x^2-x+6\)
c, \(h\left(x\right)=3x^2-x=0\)
\(\Leftrightarrow x\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy nghiệm của h(x) là x = 0 hoặc x = \(\dfrac{1}{3}\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(•f\left(0\right)=2.0^2-3.0=0\\ •f\left(2\right)=2.2^2-3.2=2\\ •f\left(\dfrac{1}{2}\right)=2.\left(\dfrac{1}{2}\right)^2.3.\dfrac{1}{2}=-1\\ •f\left(\dfrac{-2}{3}\right)=2.\left(-\dfrac{2}{3}\right)^2-3.\left(-\dfrac{2}{3}\right)=\dfrac{26}{9}\\ •f\left(3\right)=2.3^2-3.3=9\)
a: f(-1)=g(2)
nên \(-1-m-1+2m+m^2-1=12m+13m+m^2-3\)
\(\Leftrightarrow25m-3=m-3\)
=>m=0
b: \(s\left(x\right)=f\left(x\right)+g\left(x\right)=x^3+x^2\left(3m-m-1\right)+x\left(-2m+\dfrac{13}{2}m\right)+m^2-1+m^2-3\)
\(=x^3+\left(2m-1\right)x^2+\dfrac{9}{2}mx+2m^2-4\)
Vì m=1 nên \(s\left(x\right)=x^3+x^2+\dfrac{9}{2}x-2\)
Khi x=1 thì \(s=1+1+\dfrac{9}{2}-2=\dfrac{9}{2}\)
Khi x=-1 thì \(s=-1+1-\dfrac{9}{2}-2=-\dfrac{13}{2}\)
câu 1
a)\(\left|x-2\right|+4=6\Leftrightarrow\left|x-2\right|=2\Leftrightarrow\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}}\)
b) \(B=x^2y^3-3xy+4\)
khi x = -1 và y = 2
\(\Leftrightarrow B=\left(-1\right)^2.2^3-3.\left(-1\right).\left(2\right)+4\)
\(\Leftrightarrow B=1.8-\left(-6\right)+4\)
\(\Leftrightarrow B=14+4=18\)
c) nhân phần biến với biến hệ với hệ thì ra thôi
Câu 1 a) |x - 2| + 4 = 6
=> |x - 2| = 2
=> \(\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Vậy x \(\in\left\{4;0\right\}\)
b) Thay x = -1 ; y = 2 vào B ta có :
B = (-1)2.23 - 3.(-1).2 + 4
= 8 + 6 + 4 = 18
c) \(A=\frac{1}{3}x^2y^3.\left(-6x^3y^2\right)^2=\frac{1}{3}x^2y^3.36x^6y^4=12x^8y^7\)
Hệ số : 12
Bậc của đơn thức : 15
Phần biến x8y7
2) a) f(x) - g(x) = (2x3 - x2 + 5) - (-2x3 + x2 + 2x - 1)
= 2x3 - x2 + 5 + 2x3 - x2 - 2x + 1)
= 4x3 - 2x2 + 2x + 6
Bậc của f(x) - g(x) là 3
b) f(x) + g(x) = (2x3 - x2 + 5) + (-2x3 + x2 + 2x - 1)
= 2x3 - x2 + 5 - 2x3 + x2 + 2x - 1
= 2x + 4
Lại có f(x) + g(x) = 0
=> 2x + 4 = 0
=> 2x = -4
=> x = -2
Vậy x = -2
bạn ơi , theo mk nghĩ thì phải là:
tìm m biết f(5)=G(-3)
Ukm, mk xin lỗi, bạn hiểu giùm mk nhá là f(5)=g(-3) đó, mk đánh nhầm. Cảm ơn bn, mong bn giúp mk!!!