\(\Leftrightarrow...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 1 2020

Lời giải:

\(f(x)=(-x+1)(x-2)>0\Leftrightarrow \left\{\begin{matrix} -x+1< 0\\ x-2< 0\end{matrix}\right.\) hay $1< x< 2$

hay $x\in (1;2)$

Đáp án D

NV
29 tháng 2 2020

a/ \(\left[{}\begin{matrix}\Delta>0\\\left\{{}\begin{matrix}\Delta\le0\\a>0\end{matrix}\right.\end{matrix}\right.\)

b/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}\Delta\le0\\a>0\end{matrix}\right.\end{matrix}\right.\)

c/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\end{matrix}\right.\)

d/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}a< 0\\\Delta\ge0\end{matrix}\right.\end{matrix}\right.\)

NV
23 tháng 5 2019

\(f\left(x\right)=\frac{2x^2+4}{x}=2x+\frac{4}{x}\ge2\sqrt{2x.\frac{4}{x}}=4\sqrt{2}\)

\(\Rightarrow f\left(x\right)_{min}=4\sqrt{2}\) khi \(2x=\frac{4}{x}\Rightarrow x=\sqrt{2}\)

2 tháng 8 2018

1)\(\forall x1,x2\in\left(1,+\infty\right),x1\ne x2\)

\(f\left(x1\right)-f\left(x2\right)=\dfrac{1}{1-x1}-\dfrac{1}{1-x2}=\dfrac{1-x2-1+x1}{\left(1-x1\right)\left(1-x2\right)}=\dfrac{x1-x2}{\left(1-x1\right)\left(1-x2\right)}\)

\(\dfrac{f\left(x1\right)-f\left(x2\right)}{x1-x2}=\dfrac{\dfrac{x1-x2}{\left(1-x1\right)\left(1-x2\right)}}{x1-x2}=\dfrac{1}{\left(1-x1\right)\left(1-x2\right)}\)

\(x1,x2\in\left(1;+\infty\right)\)nên \(\left\{{}\begin{matrix}x1>1\\x2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-x1< 0\\1-x2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{\left(1-x1\right)\left(1-x2\right)}>0\)

Vậy hàm số đồng biến trên \(\left(1;+\infty\right)\)

Bài 3: 

a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)

b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)

c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)

d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)

NV
15 tháng 5 2020

\(\left(x-a\right)\left(ax+b\right)=0\Rightarrow\left[{}\begin{matrix}x=a\\x=-\frac{b}{a}\end{matrix}\right.\)

\(\Rightarrow\) Nghiệm của BPT: \(\left(-\infty;-\frac{b}{a}\right)\cup\left(a;+\infty\right)\)