Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : 3x+12=0 <=> x= -4
bảng xét dấu:
x | -∞ -4 + ∞ |
3x+12 |
- 0 + |
f(x) >0 ∀ x ∈ (-4;+∞)
f(x) <0 ∀ x∈ (-∞;-4)
2. Ta có : -5x+9=0 <=> x= \(\frac{9}{5}\)
Bảng xét dấu:
x | -∞ 9/5 +∞ |
-5x+9 | + 0 - |
f(x) >0 ∀ x ∈ (-∞; 9/5)
f(x) <0 ∀ x ∈(9/5; +∞)
3. Ta có : -3x-9=0 <=> x= -3
x | -∞ -3 +∞ |
-3x-9 | + 0 - |
f(x) >0 ∀ x∈ (-∞; -3)
f(x) <0 ∀x∈ ( -3; +∞ )
4. Ta có : x (2x+4)=0
+, x=0
+, 2x+4=0 <=> x= -2
x | -∞ -2 0 +∞ |
x | - \(|\) - 0 + |
2x+4 | - 0 + \(|\) + |
f (x) | + 0 - 0 + |
f(x) >0 ∀ x ∈ (-∞; -2) \(\cup\) (0; +∞)
f(x) <0 ∀ x ∈ (-2;0)
5. Ta có: (x-2)(-x+4)=0
+, x-2=0 <=> x=2
+, -x+4=0 <=> x= 4
x | -∞ 2 4 +∞ |
x-2 | - 0 + \(|\) + |
-x+4 | + \(|\) + 0 - |
f(x) | - 0 + 0 - |
f(x) >0 ∀ x ∈ (2;4)
f (x) <0 ∀x∈ (-∞;2) \(\cup\)(4; +∞)
6. Ta có : (-4x+3)(x-6)=0
+, -4x+3=0 <=>x= \(\frac{3}{4}\)
+, x-6 =0 <=> x=6
x | -∞ 3/4 6 +∞ |
-4x+3 | + 0 - \(|\) - |
x-6 | - \(|\) - 0 + |
f(x) | - 0 + 0 - |
f(x) >0 ∀ x∈ (3/4;6)
f(x) <0 ∀ x∈ (-∞; 3/4) \(\cup\)(6;+∞)
TH1: \(\Delta'=9+9m\le0\Rightarrow m\le-1\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\-1\le x_1< x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(x_1+1\right)\left(x_2+1\right)\ge0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\x_1x_2+x_1+x_2+1\ge0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\-m+2+1\ge0\\2>-1\end{matrix}\right.\) \(\Rightarrow-1< m\le3\)
Vậy \(m\le3\)
Bài giải đã giải thích rồi mà......Với 0<t<1 =>\(\left\{\begin{matrix}t^3>0\\1-t>0\end{matrix}\right.\) tích hai số dương => phải dương
TXĐ:\(D=R\backslash\left\{0\right\}\)
\(\Rightarrow\forall x\in D\) thì \(-x\in D\)
\(f\left(-x\right)=\dfrac{-\left(-x\right)^4+\left(-x\right)^2+1}{3\left(-x\right)}=-\dfrac{-x^4+x^2+1}{3x}=-f\left(x\right)\)
Hàm lẻ.
a/ \(f\left(-x\right)=\left(-x\right)^2+3\left(-x\right)^4=x^2+3x^4=f\left(x\right)\)
Hàm chẵn
b/ \(f\left(-x\right)=\left(-x\right)^3+3\left(-x\right)=-x^3-3x=-\left(x^3+3x\right)=-f\left(x\right)\)
Hàm lẻ
c/ \(f\left(-x\right)=-2\left(-x\right)^4+\left(-x\right)^2-1=-2x^4+x^2-1=f\left(x\right)\)
Hàm chẵn
d/ \(f\left(1\right)=6\); \(f\left(-1\right)=-2\ne f\left(1\right)\ne-f\left(1\right)\)
Hàm ko chẵn ko lẻ
e/ Tương tự câu trên, hàm ko chẵn ko lẻ
f/ \(f\left(-x\right)=\frac{2\left(-x\right)^2-4}{-x}=\frac{2x^2-4}{-x}=-\left(\frac{2x^2-4}{x}\right)=-f\left(x\right)\)
Hàm lẻ trong miền xác định
\(f\left(2\right)=f\left(1+1\right)=f\left(1\right)+f\left(1\right)+2.1.1+1=3\)
\(f\left(3\right)=f\left(2+1\right)=f\left(2\right)+f\left(1\right)+2.2.1+1=8\)
\(f\left(4\right)=f\left(2+2\right)=f\left(2\right)+f\left(2\right)+2.2.2+1=15\)
\(f\left(7\right)=f\left(4+3\right)=f\left(4\right)+f\left(3\right)+2.4.3+1=48\)
a/ ĐKXĐ: \(x\ge2\)
Miền xác định của hàm ko đối xứng nên hàm ko chẵn ko lẻ
b/ ĐKXĐ: \(-2\le x\le2\)
\(f\left(-x\right)=\sqrt{2-x}+\sqrt{2+x}=f\left(x\right)\) nên hàm chẵn
c/ ĐKXĐ: \(\left[{}\begin{matrix}-2\le x< 0\\0< x\le2\end{matrix}\right.\)
\(f\left(-x\right)=\frac{\sqrt{2-x}+\sqrt{2+x}}{-x}=-f\left(x\right)\Rightarrow\) hàm lẻ
d/ \(f\left(-x\right)=x^2-3x+1\Rightarrow\) hàm ko chẵn ko lẻ
e/ \(f\left(-x\right)=\left|-x+1\right|+\left|-x-1\right|=\left|x-1\right|+\left|x+1\right|=f\left(x\right)\Rightarrow\) hàm chẵn
f/ \(f\left(-x\right)=\left|-2x+1\right|-\left|-2x-1\right|=\left|2x-1\right|-\left|2x+1\right|=-f\left(x\right)\)
\(\Rightarrow\) Hàm lẻ
\(f\left(x+1\right)=7x-1=7x+7-8=7\left(x+1\right)-8\)
\(\Rightarrow f\left(t\right)=7t-8\)