Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(VT\ge0\Leftrightarrow VP\ge0\Leftrightarrow101x\ge0\Leftrightarrow x\ge0\)
=>\(\left|x+\frac{1}{101}\right|=x+\frac{1}{101};\left|x+\frac{2}{101}\right|=x+\frac{2}{101};...;\left|x+\frac{100}{101}\right|=x+\frac{100}{101}\)
=>\(x+\frac{1}{101}+x+\frac{2}{101}+x+\frac{3}{101}+...+x+\frac{100}{101}=101x\)
=>\(\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=100x\)
=>\(100x+50=101x\)
=> x = 50
bài này khó quá ta
mk chịu mất rùi
chúc bn học gioi!
và các bn khác giúp bn này nha'
hihi@@@
Ta có : x=100=>101=x+1
Thay vào f(x), ta được : x10 -(x+1)x9 +(x+1)x8 - (x+1)x7 +....-(x+1)x +100
<=> x10 - x10 -x9 +x9 + x8 -x8 -x7 +.... -x2 -x +100
<=> -x+100
=> f(100) = -x+100=-100+100=0
ta có :
\(f\left(x\right)=x^{10}-101x^9+101x^8-...-101x+101\)
\(=x^{10}-x^9-100x^9+x^8+100x^8-...-x-100x+100+1\)
ta có :
\(f\left(100\right)=100^{10}-100^9-100\times100^9+100^8+100\times100^8-...-100-100\times100+100+1\)
\(=100^{10}-100^{10}-100^9+100^9+100^8-...-100^2-100+100+1\)
\(=1\)
vậy f(100)=1
a ) \(3-4.\left|5-6x\right|=7\)
\(\Leftrightarrow4.\left|5-6x\right|=-4\)
\(\Leftrightarrow\left|5-6x\right|=-1\)
\(\Leftrightarrow\) Không thõa mãn ( vì \(x\ge0\) )
b) Do \(\left|x+2\right|\ge0;\left|x+\frac{3}{5}\right|\ge0;\left|x+\frac{1}{2}\right|\ge0\)
=> \(4x\ge0\)
=> \(x\ge0\)
Lúc này ta có: \(\left(x+2\right)+\left(x+\frac{3}{5}\right)+\left(x+\frac{1}{2}\right)=4x\)
=> \(\left(x+x+x\right)+\left(2+\frac{3}{5}+\frac{1}{2}\right)=4x\)
=> \(3x+\frac{31}{10}=4x\)
=> \(4x-3x=\frac{31}{10}\)
=> \(x=\frac{31}{10}\)
Vậy \(x=\frac{31}{10}\)
c) Do \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;\left|x+\frac{3}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\)
=> \(101x\ge0\)
=> \(x\ge0\)
Lúc này ta có: \(\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+\left(x+\frac{3}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)
=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=101x\)
100 số x
=> \(100x+\frac{\left(1+100\right).100:2}{101}=101x\)
=> \(\frac{101.50}{101}=101x-100x\)
=> \(x=50\)
Vậy x = 50
Ta có:
\(F\left(100\right)=100^{10}-101.100^9+101.100^8-101.100^7+...-101.100+101\)
\(=100-\left(100+1\right).100^9+\left(100+1\right).100^8-\left(100+1\right).100^7+...-\left(100+1\right).100+101\)
\(=100^{10}-100^{10}-100^9+100^9+100^8-100^8-100^7+...-100^2-100+101\)
\(=1\)
Ta có:\(101=100+1=x+1\)
\(\Rightarrow F\left(100\right)=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+x+1\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1=1\)
x=100
nên x+1=101
\(f\left(x\right)=x^{2014}-\left(x+1\right)\left(x^{2013}-x^{2012}+...-x^2+x\right)+25\)
\(=x+25\)
=x+25=100+25=125
Vì \(\left|x+\frac{1}{101}\right|+\left|x+\frac{1}{102}\right|+....+\left|x+\frac{100}{101}\right|>0\)
\(\Rightarrow101x>0\)
\(\Rightarrow x>0\)
\(\Rightarrow\left(x+\frac{1}{101}\right)+.....+\left(x+\frac{100}{101}\right)=101x\)
\(\Rightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+....+\frac{100}{101}\right)=101x\)
\(\Rightarrow x=\frac{\left(100+1\right)100:2}{101}\)
\(\Rightarrow x=\frac{50.101}{101}\)
\(\Rightarrow x=50\)
Vậy x = 50
Do \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;\left|x+\frac{3}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\)
=> \(101x\ge0\)
=> \(x\ge0\)
=> \(\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+\left(x+\frac{3}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)
=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=101x\)
100 số x 100 phân số
=> \(100x+\frac{\left(1+100\right).100:2}{101}=101x\)
=> \(\frac{101.50}{101}=101x-100x\)
=> \(x=50\)
\(f\left(x\right)=x^8-101x^7+101x^6-...-101x+25\)
\(f\left(100\right)=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-...-\left(x+1\right)x+25\)
\(f\left(100\right)=x^8-x^8-x^7+x^7+x^6-...-x^2-x+25\)
\(f\left(100\right)=-x+25=-100+25=-75\)
a) Vì \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{99}{100}< \frac{100}{101}\)nên:
\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
hay A < B (đpcm)
b) \(AB=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)
\(\Leftrightarrow AB=\frac{1.2.3.4.5.6...99.100}{2.3.4.5.6.7....100.101}\)
\(\Leftrightarrow AB=\frac{1}{101}\)
Vậy \(AB=\frac{1}{101}\)
a, So sánh từng nhân tử của hai vế ta thấy:
\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{99}{100}< \frac{100}{101}\)
Suy ra \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
Suy ra A<B
b, \(A.B=\frac{1.2.3.4.5.6...99.100}{2.3.4.5.6.7...100.101}=\frac{1}{101}\)
Ta có:\(f\left(x\right)=x^8-100x^7-x^7+100x^6-....+x^2-100x-x+100-75\)
\(=x^7\left(x-100\right)-x^6\left(x-100\right)-....+x\left(x-100\right)-\left(x-100\right)-75\)
Nên \(f\left(100\right)=x^7.\left(100-100\right)-x^6\left(100-100\right)-....+x\left(100-100\right)-\left(100-100\right)-75\)
\(=-75\)
Với x= 100 thì 101=x+1 nên ta có f(100)=x\(^8\)-(x+1)x\(^7\)=(x+1)x\(^6\)-(x+1)x\(^5\)+....-(x+1)+25=x\(^8\)-x\(^8\)+x\(^7\)-......-x-1+25=24