\(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)

Tìm x,y,z

giúp...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)

 \(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)

=> x = 75.4 : 15 = 20 ;

     y = 60.4 : 15 = 16 ;

     z = 45.4 : 15 = 12

Vậy x = 20 ; y = 16 ; z = 12 

27 tháng 10 2019

2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)

Nếu x + y + z + t = 0

=> x + y = - (z + t)

=> y + z = - (t + x)

=> z + t = - (x + y)

=> t + x = - (z + y)

Khi đó : 

P =  \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

=> P = 4 

Nếu x + y + z + t khác 0 

=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)

=> y + z + t = z + t + x = t + x + y = x + y + z

=> x =y = z = t

Khi đó : P = 1 + 1 + 1 + 1 = 4

Vậy nếu x + y + z + t = 0 thì P = - 4

       nếu x + y + z + t khác 0 thì P = 4

21 tháng 8 2021

Áp dụng tc của dãy tỉ số = nhau ta được :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)

Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)

\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy ...

10 tháng 2 2022

undefinedbạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))

31 tháng 7 2020

ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+x}{z}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

31 tháng 7 2020

a,Sử dụng tính chất của dãy tỉ số bằng nhau

 \(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+y+z+z+x}{x+y+z}=2\)

\(< =>\frac{2}{x+y+z}=2< =>x+y+z=1\)

17 tháng 8 2020

a. Vì \(\left|x+\frac{1}{2}\right|\ge0\forall x;\left|y-\frac{3}{4}\right|\ge0\forall y;\left|z-1\right|\ge0\forall z\)

\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> | x + 1/2 | = 0 ; | y - 3/4 | = 0 ; | z - 1 | = 0

<=> x = - 1/2 ; y = 3/4 ; z = 1

b. Vì \(\left|x-\frac{3}{4}\right|\ge0\forall x;\left|\frac{2}{5}-y\right|\ge0\forall y\left|x-y+z\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> | x - 3/4 | = 0 ; | 2/5 - y | = 0 ; | x - y + z | = 0

<=> x = 3/4 ; y = 2/5 ; z = - 7/20

17 tháng 8 2020

a) Ta có \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\forall x\\\left|y-\frac{3}{4}\right|\ge0\forall y\\\left|z-1\right|\ge0\forall z\end{cases}}\Rightarrow\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)

Vậy x = -1/2 = y = 3/4 ; z = 1 

b) Ta có : \(\hept{\begin{cases}\left|x-\frac{3}{4}\right|\ge0\forall x\\\left|\frac{2}{5}-y\right|\ge0\forall y\\\left|x-y+z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=-\frac{7}{20}\end{cases}}\)

Vậy x = 3/4 ; y = 2/5 ; z = -7/20

20 tháng 8 2016

a)  \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow x+y+z=\frac{1}{2}\)(do 1/(x+y+z)=2)

\(\Rightarrow y+z=\frac{1}{2}-x;z+x=\frac{1}{2}-y;x+y=\frac{1}{2}-z\)

Thay vào lần lượt ta có:

\(\frac{\frac{1}{2}-x+1}{x}=2\)\(\Rightarrow x=\frac{1}{2}\)

\(\frac{\frac{1}{2}-y+2}{y}=2\)\(\Rightarrow y=\frac{5}{6}\)

\(\frac{\frac{1}{2}-z-3}{z}=2\)\(\Rightarrow z=-\frac{5}{6}\)

2 tháng 2 2017

sai đề

2 tháng 2 2017

Phải là : y/(z+y+1)

19 tháng 6 2021

Ta có: \(x+y=\frac{1}{2}\) (1)

    \(y+z=\frac{1}{3}\)(2)

  \(x+z=\frac{1}{4}\)(3)

Từ (1), (2) và (3) cộng vế theo vế: 

\(x+y+y+z+x+z=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

<=> \(2\left(x+y+z\right)=\frac{13}{12}\)

<=> \(x+y+z=\frac{13}{24}\)

=> \(\hept{\begin{cases}x=\frac{13}{24}-\left(y+z\right)=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\\y=\frac{13}{24}-\left(x+z\right)=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\\z=\frac{13}{24}-\left(x+y\right)=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\end{cases}}\)

DD
19 tháng 6 2021

\(\hept{\begin{cases}x+y=\frac{1}{2}\\y+z=\frac{1}{3}\\z+x=\frac{1}{4}\end{cases}}\Rightarrow2\left(x+y+z\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

\(\Leftrightarrow x+y+z=\frac{13}{24}\)

\(x=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\)

\(y=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\)

\(z=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\)

1 tháng 8 2017

a) Áp dụng tính chất ..., ta có :

 \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{8}{4}=2\)

\(\Rightarrow x=4;y=6;z=8\)

b)2x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{2}\)\(\Rightarrow\frac{x}{20}=\frac{y}{10}\)( 1 )

4y =5z \(\Rightarrow\frac{y}{5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{10}=\frac{z}{8}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{8}\)

Áp dụng tính chất ..., ta có :

\(\frac{x}{20}=\frac{y}{10}=\frac{z}{8}=\frac{x-y+2z}{20-10+16}=\frac{40}{26}=\frac{20}{13}\)

\(\Rightarrow x=\frac{400}{13};y=\frac{200}{13};z=\frac{160}{13}\)

còn lại tương tự