Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt\(\frac{x}{y}=\frac{y}{z}=k\)\(\left(k\ne0\right)\)
Ta có \(x=ky;y=kz\)
Thay \(x=ky;y=kz\)vào \(\frac{x^2+y^2}{y^2+z^2}\)ta được
\(\frac{\left(ky\right)^2+\left(kz\right)^2}{y^2+z^2}=\frac{k^2.y^2+k^2.z^2}{y^2+z^2}=\frac{k^2.\left(y^2+z^2\right)}{y^2+z^2}=k^2\)
\(\frac{x}{z}=\frac{ky}{z}=\frac{k.k.z}{z}=k^2\)
Vì \(k^2=k^2\Rightarrow\frac{x^2+y^2}{y^2+z^2}=\frac{x}{z}\left(đpcm\right)\)
\(\frac{x}{z}=\frac{z}{y}\)
\(\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2=\frac{x.z}{z.y}\)
\(\Rightarrow\frac{x^2}{z^2}=\frac{z^2}{y^2}=\frac{x}{y}\)(Do loại bỏ z trên tử + dưới mấy nên còn x/y)
\(\Rightarrow\frac{x^2+z^2}{z^2+y^2}=\frac{x}{y}\)
Vậy \(\frac{x^2+z^2}{z^2+y^2}=\frac{x}{y}\)
Có\(\frac{x}{z}=\frac{z}{y}\)⇒\(xy=\text{x}^{2}\)
⇒\(\frac{\text{x}^{2}+\text{z}^{2}}{\text{y}^{2}+\text{z}^{2}}\)=\(\frac{\text{x}^{2}+xy}{\text{y}^{2}+xy}\)=\(\frac{x(x+y)}{y(x+y)}\)=\(\frac{x}{y}\)
⇒\(\frac{\text{x}^{2}+\text{z}^{2}}{\text{y}^{2}+\text{z}^{2}}\)=\(\frac{x}{y}\)
Vậy \(\frac{\text{x}^{2}+\text{z}^{2}}{\text{y}^{2}+\text{z}^{2}}\)=\(\frac{x}{y}\)
Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)
=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))
=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)
Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)
Ta có: \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
\(\Leftrightarrow\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=1\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{yz}-\frac{1}{xy}-\frac{1}{zx}\right)=1\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\cdot\frac{x-y-z}{xyz}=1\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Giải:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Rightarrow x=ak,y=bk,z=ck\)
Ta có:
\(\left(x+y+z\right)^2=\left(ak+bk+ck\right)^2=\left[k\left(a+b+c\right)\right]^2=\left(k.1\right)^2=k^2\) (1)
\(x^2+y^2+z^2=\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2=a^2.k^2+b^2.k^2+c^2.k^2=\left(a^2+b^2+c^2\right).k^2=1.k^2=k^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\left(đpcm\right)\)
Ta có: \(\frac{x}{y}\)\(=\frac{z}{y}\)
\(\Rightarrow\frac{x}{z}=\frac{y}{y}\Rightarrow\frac{x}{y}=\frac{z}{z}\)(vì \(\frac{y}{y}\)=1)
Ta lại có: \(\frac{x^2+z^2}{y^2+z^2}\)\(\Rightarrow\frac{x^2}{y^2}=\frac{z^2}{z^2}\)
\(\Rightarrow\frac{x^2+z^2}{y^2+z^2}=\frac{x^2}{y^2}=\frac{x}{y}\)
\(\Rightarrow\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\)
Chúc bạn hok tot