\(\frac{x^9-1}{x^9+1}=7\). Vậy giá trị biểu thức A=\(\frac{x^{18...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2017

bài này tìm đc x mà

17 tháng 3 2017

bạn có thể cho mình cách giải cụ thể được không?

9 tháng 4 2017

\(\frac{x^9-1}{x^9+1}=7\)=>x9-1=7x9+1

=>x9=\(\frac{-8}{6}\)

=>(x9)2=(\(\frac{-8}{6}\))2

=>x18=\(\frac{16}{9}\)=>..................................

10 tháng 4 2017

mơn bạn

25 tháng 2 2017

\(\frac{a-1}{a+1}=7\Rightarrow7a+7=a-1\Rightarrow6a=-8=>a=-\frac{8}{6}=\frac{-4}{3}\)

a^2=16/9=>

\(A=\frac{a^2-1}{a^2+1}=\frac{\frac{16}{9}-1}{\frac{16}{9}+1}=\frac{16-9}{16+9}=\frac{7}{25}\)

25 tháng 2 2017

tương tự. cám ơn

19 tháng 7 2016

1) \(\frac{xy}{x^2+y^2}=\frac{3}{8}\Leftrightarrow3x^2+3y^2-8xy=0\)

Nhận thấy điều kiện của phương trình là x,y cùng khác 0

Chia cả hai vê của phương trình trên cho \(y^2\ne0\)được :

\(3\left(\frac{x}{y}\right)^2-8\left(\frac{x}{y}\right)+3=0\). Đặt \(a=\frac{x}{y}\), phương trình trở thành : \(3a^2-8a+3=0\Leftrightarrow\orbr{\begin{cases}x=\frac{4+\sqrt{7}}{3}\\x=\frac{4-\sqrt{7}}{3}\end{cases}}\)

Từ đó rút ra được tỉ lệ của \(\frac{x}{y}\). Bạn thay vào tính A là được :)

2) \(\frac{x^9-1}{x^9+1}=7\Leftrightarrow\frac{x^9-1}{x^9+1}-1=6\Leftrightarrow\frac{-2}{x^9+1}=6\Leftrightarrow x^9=\frac{-2}{6}-1=-\frac{4}{3}\)

Ta có \(A=\frac{\left(x^9\right)^2-1}{\left(x^9\right)^2+1}\). Thay giá trị của x9 vừa tính ở trên vào là được :)

26 tháng 11 2016

a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)

\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)

\(=\frac{x^2+4x+4}{x^2}\)

\(\left(\frac{x+2}{x}\right)^2\)

=>phép chia = 1 với mọi x # 0 và x#-1

b)Cm tương tự

26 tháng 11 2016

khó quá

23 tháng 12 2017

\(x\ne+-3\)

\(3\left(x-3\right)+1\left(x+3\right)+18\)

3x-9+x+3+18

4x+15

x=-15/4

26 tháng 12 2018

300m2

9 tháng 3 2019

ta có x^2+y^2-6x+18+6y=0

(x-3)^2+(y+3)^2=0

x=3 và y=-3 thay vào biểu thức A bạn sẽ tính dc kq

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??