\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=2017\) Tính giá trị biểu thức P=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2021

P = \(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}-3=y.\frac{y}{x+y}+z.\frac{z}{y+z}+x.\frac{x}{z+x}-3\)

\(=y.\left(\frac{y}{x+y}-1+1\right)+z\left(\frac{z}{y+z}-1+1\right)+x\left(\frac{x}{z+x}-1+1\right)-3\)

\(=y\left(\frac{-x}{x+y}+1\right)+z\left(\frac{-y}{y+z}+1\right)+x\left(\frac{-z}{x+z}+1\right)-3\)

\(=x+y+z-\left(\frac{xy}{x+y}+\frac{yz}{y+z}+\frac{xz}{z+x}\right)-3\)

Lại có \(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=2017\)

\(\Rightarrow x.\frac{x}{x+y}+y.\frac{y}{y+z}+z.\frac{z}{z+x}=2017\)

=> \(x\left(\frac{x}{x+y}-1+1\right)+y\left(\frac{y}{y+z}-1+1\right)+z\left(\frac{z}{z+x}-1+1\right)=2017\)

=> \(x\left(\frac{-y}{x+y}+1\right)+y\left(\frac{-z}{y+z}+1\right)+z\left(\frac{-x}{x+z}+1\right)=2017\)

=> \(x+y+z-\left(\frac{xy}{x+y}+\frac{yz}{y+z}+\frac{zx}{z+x}\right)=2017\)

Khi đó P = 2017 - 3 = 2014

27 tháng 12 2016

Câu trả lời là thiếu dự kiện

30 tháng 12 2018

Từ \(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\Rightarrow\frac{x}{y-z}=-\frac{y}{z-x}-\frac{z}{x-y}\)

\(\Rightarrow\frac{x}{y-z}=\frac{y}{x-z}+\frac{z}{y-x}\)

\(\Leftrightarrow\frac{x}{y-z}=\frac{y\left(y-x\right)+z\left(x-z\right)}{\left(x-z\right)\left(y-x\right)}\)

\(\Leftrightarrow\frac{x}{y-z}=\frac{y^2-xy+zx-z^2}{\left(x-z\right)\left(y-x\right)}\)

\(\Leftrightarrow\frac{x}{\left(y-z\right)^2}=\frac{y^2-xy+zx-z^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}\)

C/m tương tự đc \(\frac{y}{\left(z-x\right)^2}=\frac{z^2-yz+xy-x^2}{\left(x-z\right)\left(y-z\right)\left(y-z\right)}\)

                          \(\frac{z}{\left(x-y\right)^2}=\frac{x^2-xz+zy-y^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}\)

Khi  đó \(Q=\frac{y^2-xy+xz-z^2+z^2-yz+xy-x^2+x^2-xz+yz-y^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}=0\)

Vậy Q=0

24 tháng 3 2019

\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\)

\(\Rightarrow\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{x+z}+\frac{z\left(x+y+z\right)}{x+y}=x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z=x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)

\(\Rightarrow M=2019+0=2019\)

5 tháng 12 2019

Ta có : \(x+y+z=0\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^2=z^2\Rightarrow x^2+y^2+2xy=z^2\)

\(\Rightarrow x^2+y^2=z^2-2xy\)

Tương tự ta có : \(y^2+z^2=x^2-2yz\)

\(x^2+z^2=y^2-2xz\)

Thay vào biểu thức ta có :

\(A=\frac{x^2}{y^2+z^2-x^2}+\frac{y^2}{x^2+z^2-y^2}+\frac{z^2}{x^2+y^2-z^2}\)

\(=\frac{x^2}{x^2-2yz-x^2}+\frac{y^2}{y^2-2xz-y}+\frac{z^2}{z^2-2xy-z^2}\)

\(=-\frac{x^2}{2yz}-\frac{y^2}{2xz}-\frac{z^2}{2xy}\)

\(=\frac{-x^3-y^3-z^3}{2xyz}=-\frac{x^3+y^3+z^3}{2xyz}\)

\(=\frac{3xyz}{2xyz}=-\frac{3}{2}\)

Chỗ \(x^3+y^3+z^3=3xyz\)là do \(x+y+z=0\)nhé, bạn cần chứng minh không ?

29 tháng 12 2016

...

=>\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=1\)

=>\(\frac{x^2}{y+z}+\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{y^2}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}+\frac{z^2}{x+y}=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}\right)=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy+xz}{y+z}+\frac{xy+yz}{z+x}+\frac{xz+yz}{x+y}\right)=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+1=1\)

=>\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)

29 tháng 12 2016

Dáp số =0

HD