Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T>a có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
=>\(\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
=> \(\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
=> \(ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)=abc\)
=> \(a^2b+ab^2+abc+abc+b^2c+bc^2+ca^2+abc+ac^2=abc\)
=> \(a^2b+ab^2+b^2c+bc^2+ca^2+ac^2+2abc=0\)
=> \(\left(a^2b+2abc+bc^2\right)+\left(ab^2+2abc+ac^2\right)+\left(b^2c-2abc+ca^2\right)=0\)
=> \(b\left(a+c\right)^2+a\left(b+c\right)^2+c\left(a-b\right)^2=0\)
=> \(\hept{\begin{cases}a+c=0\\b+c=0\\a-b=0\end{cases}\Rightarrow\hept{\begin{cases}a=-c\\b=-c\\a=b\end{cases}}}\)
=> trong 3 số a,b,c có 2 số đối nhau ( đpcm)
Thay a=-c ,b = -c vào \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-c\right)^{2019}}+\frac{1}{\left(-c\right)^{2019}}+\frac{1}{c^{2019}}\)
\(=-\frac{1}{c^{2019}}\)(1)
\(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-c\right)^{2019}+\left(-c\right)^{2019}+c^{2019}}=-\frac{1}{c^{2019}}\) (2)
Từ (1),(2) => \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\) (đpcm)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a=-b\left(h\right)b=-c\left(h\right)c=-a\)
Thay vào tính nốt
vô đây mà xem ; /hoi-dap/question/125436.html?pos=554506
1/a+1/b+1/c = 0 <=>ab+bc+ca/abc=0
=> ab+bc+ca = 0
Khi đó : (a+b+c)^2 = a^2+b^2+c^2+2.(ab+bc+ca) = a^2+b^2+c^2+2.0 = a^2+b^2+c^2
=> ĐPCM
k mk nha
Bài làm :
Ta có :
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2\)
\(\Leftrightarrow2ab+2bc+2ac=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow ab+bc+ac=0\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=0\)
\(\Leftrightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ac}{abc}=0\)
\(\Leftrightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\left(1\right)\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\left(2\right)\)
Thay (1) vào (2) ; ta được :
\(\frac{1}{a^3}+\frac{1}{b^3}-\frac{3}{abc}=-\frac{1}{c^3}\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
=> Điều phải chứng minh
Ta có \(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)
\(\Leftrightarrow2ab+2ac+2bc=0\)
\(\Leftrightarrow2\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow ab+ac+bc=0\)
Ta lại có giả sử
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
\(\Leftrightarrow\frac{a^3b^3+b^3c^3+c^3a^3}{a^3b^3c^3}=\frac{3}{abc}\)
\(\Leftrightarrow\frac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=3\)
\(\Leftrightarrow a^3b^3+b^3c^3+c^3a^3=3.a^2b^2c^2\)
\(\Leftrightarrow a^3b^3+b^3c^3+c^3a^3-3.a^2b^2c^2=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)^3-3ca\left(ab+bc\right)\left(ab+bc+ac\right)-3ab^3c\left(-ac\right)-3a^2b^2c^2=0\)
\(\Leftrightarrow0+3a^2b^2c^2-3a^2b^2c^2+0=0\)
\(\Leftrightarrow0=0\left(lđ\right)\)
Vậy bất đẳng thức được chứng minh
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Rightarrow ab+bc+ca=0\)
Chứng minh đẳng thức này mà áp dụng:
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Khi đó
\(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}\)
\(=\frac{\left(a^3b^3+b^3c^3+c^3a^3\right)}{abc}=\frac{3a^2b^2c^2}{abc}=3abc\) Do ab+bc+ca=0
từ a+b+c = 2 suy ra ( a+b+c)^2 =4 <=> a^2 +b^2 +c^2 + 2 (ab+ac+bc)=4 ma2 a^2 + b^2 +c^2 = 2 nên suy ra 2(ab+bc+ac)=2 <=> ab +ac+bc=1 , chia cả 2 vế cho abc khác 0 ta được 1/a+1/b+1/c = 1/abc (đpcm)
Ta có: \(a+b+c=2\)
\(\Leftrightarrow\left(a+b+c\right)^2=4\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=4\)
\(\Leftrightarrow2+2\left(ab+bc+ac\right)=4\)(Vì \(a^2+b^2+c^2=2\))
\(\Leftrightarrow2\left(ab+bc+ac\right)=2\)
\(\Leftrightarrow ab+bc+ac=1\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{abc}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\left(đpcm\right)\)
mk ko bt 123
\(\frac{a}{c}=\frac{a-b}{b-c}\Rightarrow a\left(b-c\right)=c\left(a-b\right)\) (1)
\(\frac{1}{c}+\frac{1}{a-b}=\frac{a-b+c}{c\left(a-b\right)}\) (2)
\(\frac{1}{b-c}-\frac{1}{a}=\frac{a-b+c}{a\left(b-c\right)}\) (3)
\(Từ\left(1\right),\left(2\right),\left(3\right)\Rightarrow\)điều phải chứng minh