\(\frac{a}{b}>\frac{c}{d}\left(b>0,d>0\right)\)chứng minh rằng 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

10 tháng 9 2016

Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad.ab< bc.ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)

\(ad< bc\Rightarrow ad.cd< bc.cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)

Từ (1) và (2) ta được: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

29 tháng 8 2016

đụ mẹ bọn online math

29 tháng 8 2016
J vậy bạn
27 tháng 8 2018

Đặt \(\hept{\begin{cases}\frac{a}{b}=k\Rightarrow a=bk\\\frac{c}{d}=q\Rightarrow c=dq\end{cases}}\)

a) Thay a và c vào biểu thức ta có :

\(\frac{bk}{b}< \frac{dq}{d}\Rightarrow k< q\)

=> ad ... bc

=> bkd ... bdq

=> k ... q

=> k < q

=> đpcm

b) tương tự thay a và c vào

27 tháng 9 2017

a) Vì \(\frac{a}{b}< \frac{c}{d}\) và \(b.d>0\) nên suy ra \(ad< bc\).

Tách bất đẳng thức kép cần chứng minh thành 2 bất đảng thức  \(\frac{a}{b}< \frac{a+c}{b+d}\) và  \(\frac{a+c}{b+d}< \frac{c}{d}\)

Ta cần chứng minh:

     \(\frac{a}{b}< \frac{a+c}{b+d}\)

    \(\Leftrightarrow a\left(b+d\right)< \left(a+c\right)b\) (do b, d > 0)

    \(\Leftrightarrow ab+ad< ab+cb\)

   \(\Leftrightarrow ad< cb\)

Bất đẳng thức cuối đúng nên bất đẳng thức \(\frac{a}{b}< \frac{a+c}{b+d}\) đúng.

Ta cần chứng minh tiếp:

      \(\frac{a+c}{b+d}< \frac{c}{d}\)

     \(\Leftrightarrow\left(a+c\right)d< c\left(b+d\right)\) do b.d > 0

     \(\Leftrightarrow ad+cd< cb+cd\)

    \(\Leftrightarrow ad< cb\)

Bất đẳng thức cuối đúng do giả thiết.

Vậy bài toán được chứng minh

b) Áp dụng câu a ta có:

Từ \(\frac{-1}{3}< \frac{-1}{4}\) => \(\frac{-1}{3}< \frac{-1-1}{3+4}< \frac{-1}{4}\)

Ta lấy phân số xen giữa là \(-\frac{2}{7}\) và ta có: \(\frac{-1}{3}< \frac{-2}{7}< \frac{-1}{4}\)

Áp dụng tiếp kết quả câu a ta được:

  \(\frac{-1}{3}< \frac{-1-2}{3+7}< \frac{-2}{7}< \frac{-2-1}{7+4}< \frac{-1}{4}\)

Hay là:

  \(\frac{-1}{3}< \frac{-3}{10}< \frac{-2}{7}< \frac{-3}{11}< \frac{-1}{4}\)

Và 3 phân số xen giữa là: \(-\frac{3}{10};-\frac{2}{7};-\frac{3}{11}\)

27 tháng 9 2017

a, Ta chứng minh: \(\frac{a}{b}< \frac{a+c}{b+d}\), biết \(\frac{a}{b}< \frac{c}{d}\)

\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cd}{bd}\)vì \(b>0;d>0\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\Rightarrow ab+d< ba+c\Rightarrow\frac{a+c}{b+d}\)

Tương tự: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\). Vậy \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

b, \(\frac{-1}{3}=\frac{-16}{48}< \frac{-15}{48};\frac{-14}{48};\frac{-13}{48}< \frac{-12}{48}=\frac{-1}{4}\)

Vậy 3 số hữu tỉ đó là: \(\frac{-15}{48};\frac{-14}{48};\frac{-13}{48}\)

10 tháng 6 2015

a) Ta có : a/b < c/d => ad<bc

Ta ab vào hai vế,ta được:

ad+ab < bc+ab => a(b+d) < b(a+c) => \(\frac{a}{b}<\frac{a+c}{b+d}\)                                               (1)

Ta thêm lại cd vào hai vế,ta được:

ad+cd < bc+cd => d(a+c) < c(b+d) => \(\frac{c}{d}>\frac{a+c}{b+d}\)                                           (2)

Từ (1) và (2),suy ra : ab < a+c/b+d < c/d

b)Ba số hữu tỉ xen giữa -1/3 và -1/4 là : -15/48 ; -14/48 và -13/48

29 tháng 7 2017

\(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow ad< bc\)\(\Rightarrow ad+ab< bc+ab\)\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

\(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow ad< bc\)\(\Rightarrow ad+cd< bc+cd\)\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

23 tháng 6 2018

Có \(\frac{a}{b}< \frac{c}{d}\left(b,d>0\right)\)

\(\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< ab+bc\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (vì b, b + d > 0) (1)

Có \(ad< bc\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (vì b + d, d > 0) (2)

Từ (1)(2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Bài làm

Giả sử:  \(\frac{a}{b}>\frac{c}{d}\)

\(\Rightarrow ad>bc\)

Cộng cả hai vế với ab, ta được

ad + ab > bc + ab

=> a( b + d ) > b( a + c )

\(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}\)    (1)

Lại có: \(\frac{a}{b}>\frac{c}{d}\)

\(\Rightarrow ad>bc\)

Cộng cả hai vế với dc, ta được:

ad + dc > bc + dc

=> d( a + c ) > c( b + d )

\(\Rightarrow\frac{a+c}{b+d}>\frac{c}{d}\)            (2)

Từ (1) và (2)  \(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)( đpcm )

31 tháng 7 2020

Cảm ơn bạn nha