Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad.ab< bc.ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)
\(ad< bc\Rightarrow ad.cd< bc.cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)
Từ (1) và (2) ta được: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Đặt \(\hept{\begin{cases}\frac{a}{b}=k\Rightarrow a=bk\\\frac{c}{d}=q\Rightarrow c=dq\end{cases}}\)
a) Thay a và c vào biểu thức ta có :
\(\frac{bk}{b}< \frac{dq}{d}\Rightarrow k< q\)
=> ad ... bc
=> bkd ... bdq
=> k ... q
=> k < q
=> đpcm
b) tương tự thay a và c vào
a) Vì \(\frac{a}{b}< \frac{c}{d}\) và \(b.d>0\) nên suy ra \(ad< bc\).
Tách bất đẳng thức kép cần chứng minh thành 2 bất đảng thức \(\frac{a}{b}< \frac{a+c}{b+d}\) và \(\frac{a+c}{b+d}< \frac{c}{d}\)
Ta cần chứng minh:
\(\frac{a}{b}< \frac{a+c}{b+d}\)
\(\Leftrightarrow a\left(b+d\right)< \left(a+c\right)b\) (do b, d > 0)
\(\Leftrightarrow ab+ad< ab+cb\)
\(\Leftrightarrow ad< cb\)
Bất đẳng thức cuối đúng nên bất đẳng thức \(\frac{a}{b}< \frac{a+c}{b+d}\) đúng.
Ta cần chứng minh tiếp:
\(\frac{a+c}{b+d}< \frac{c}{d}\)
\(\Leftrightarrow\left(a+c\right)d< c\left(b+d\right)\) do b.d > 0
\(\Leftrightarrow ad+cd< cb+cd\)
\(\Leftrightarrow ad< cb\)
Bất đẳng thức cuối đúng do giả thiết.
Vậy bài toán được chứng minh
b) Áp dụng câu a ta có:
Từ \(\frac{-1}{3}< \frac{-1}{4}\) => \(\frac{-1}{3}< \frac{-1-1}{3+4}< \frac{-1}{4}\)
Ta lấy phân số xen giữa là \(-\frac{2}{7}\) và ta có: \(\frac{-1}{3}< \frac{-2}{7}< \frac{-1}{4}\)
Áp dụng tiếp kết quả câu a ta được:
\(\frac{-1}{3}< \frac{-1-2}{3+7}< \frac{-2}{7}< \frac{-2-1}{7+4}< \frac{-1}{4}\)
Hay là:
\(\frac{-1}{3}< \frac{-3}{10}< \frac{-2}{7}< \frac{-3}{11}< \frac{-1}{4}\)
Và 3 phân số xen giữa là: \(-\frac{3}{10};-\frac{2}{7};-\frac{3}{11}\)
a, Ta chứng minh: \(\frac{a}{b}< \frac{a+c}{b+d}\), biết \(\frac{a}{b}< \frac{c}{d}\)
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cd}{bd}\)vì \(b>0;d>0\Rightarrow ad< bc\)
\(\Rightarrow ad+ab< bc+ab\Rightarrow ab+d< ba+c\Rightarrow\frac{a+c}{b+d}\)
Tương tự: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\). Vậy \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
b, \(\frac{-1}{3}=\frac{-16}{48}< \frac{-15}{48};\frac{-14}{48};\frac{-13}{48}< \frac{-12}{48}=\frac{-1}{4}\)
Vậy 3 số hữu tỉ đó là: \(\frac{-15}{48};\frac{-14}{48};\frac{-13}{48}\)
a) Ta có : a/b < c/d => ad<bc
Ta ab vào hai vế,ta được:
ad+ab < bc+ab => a(b+d) < b(a+c) => \(\frac{a}{b}<\frac{a+c}{b+d}\) (1)
Ta thêm lại cd vào hai vế,ta được:
ad+cd < bc+cd => d(a+c) < c(b+d) => \(\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2),suy ra : ab < a+c/b+d < c/d
b)Ba số hữu tỉ xen giữa -1/3 và -1/4 là : -15/48 ; -14/48 và -13/48
\(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow ad< bc\)\(\Rightarrow ad+ab< bc+ab\)\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
\(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow ad< bc\)\(\Rightarrow ad+cd< bc+cd\)\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Có \(\frac{a}{b}< \frac{c}{d}\left(b,d>0\right)\)
\(\Rightarrow ad< bc\)
\(\Rightarrow ab+ad< ab+bc\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (vì b, b + d > 0) (1)
Có \(ad< bc\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (vì b + d, d > 0) (2)
Từ (1)(2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Bài làm
Giả sử: \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow ad>bc\)
Cộng cả hai vế với ab, ta được
ad + ab > bc + ab
=> a( b + d ) > b( a + c )
\(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow ad>bc\)
Cộng cả hai vế với dc, ta được:
ad + dc > bc + dc
=> d( a + c ) > c( b + d )
\(\Rightarrow\frac{a+c}{b+d}>\frac{c}{d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)( đpcm )