Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\)\(\frac{a}{b}+1=\frac{c}{d}+1\)
\(\Rightarrow\)\(\frac{a+b}{b}=\frac{c+d}{d}\left(đpcm\right)\)
\(b.\)\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\)\(\frac{a}{b}-1=\frac{c}{d}-1_{ }\)
\(\Rightarrow\)\(\frac{a-b}{b}=\frac{c-d}{d}\)\(\left(đpcm\right)\)
\(c.\)\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\)\(\frac{b}{a}=\frac{d}{c}\)
\(\Rightarrow\)\(\frac{b}{a}+1=\frac{d}{c}+1\)
\(\Rightarrow\)\(\frac{b+a}{a}=\frac{d+c}{c}\)hay \(\frac{a+b}{a}=\frac{c+d}{d}\left(đpcm\right)\)
\(d.\)Tương tự \(c\) nhé bn. Chúc bn học tốt!
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)
\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}.\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm1\right).\)
b) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\)
\(\Rightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}.\)
\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\left(đpcm2\right).\)
c) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\) (1)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a-c}{b-d}=\frac{a+c}{b+d}\left(đpcm3\right).\)
Chúc bạn học tốt!
a)
i) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}.\)
\(\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\)
\(\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\)
\(\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}.\)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\left(đpcm\right).\)
Chúc bạn học tốt!
Lời giải:
a)
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$
i. Khi đó:
$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$
$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$
Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)
ii.
$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$
$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$
Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)
b)
Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$
$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$
$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$
Ta có đpcm.
Lời giải:
a)
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$
i. Khi đó:
$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$
$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$
Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)
ii.
$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$
$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$
Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)
b)
Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$
$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$
$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$
Ta có đpcm.
a) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)
\(\Rightarrow ad+bd=bc+bd\)
\(\Rightarrow d\left(a+b\right)=b\left(c+d\right)\)
\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
b) \(ad=bc\)
\(\Rightarrow ac-ad=ac-bc\)
\(\Rightarrow a\left(c-d\right)=c\left(a-b\right)\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)