\(\frac{a}{b}=\frac{c}{d}\)  CMR : \(\frac{a^{2009}+c^{2009}}{b^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

Ta có: a/b=c/d

Áp dụng t/c dãy tỉ số bằng nhau:

a/b=c/d=(a+c)/(b+d)

=>(a/b)2009=(c/d)2009=(a+c)2009/(b+d)2009(1)

a/b=c/d => (a/b)2009=(c/d)2009

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

(a/b)2009=(c/d)2009=a2009/b2009=c2009/d2009=(a2009+c2009)/(b2009+d2009)(2)

Từ (1)(2)=>....................

8 tháng 4 2016

cảm ơn bạn nhiều nha

13 tháng 8 2019

Vì \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a^{2009}}{b^{2009}}=\frac{c^{2009}}{d^{2009}}=\left(\frac{a}{b}\right)^{2009}=\frac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}\)( áp dụng tc của dãy tỉ số bằng nhau )

Vậy ...

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

\(\Leftrightarrow ab-ad+cb-cd=ab+ad-cb-cd\)

=>-2ad=-2cb

=>ad=cb

=>a/b=c/d

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}=\dfrac{b^{2009}k^{2009}-d^{2009}k^{2009}}{b^{2009}-d^{2009}}=k^{2009}\)

\(\left(\dfrac{a}{b}\right)^{2009}=\left(\dfrac{bk}{b}\right)^{2009}=k^{2009}\)

Do đó: \(\dfrac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}=\left(\dfrac{a}{b}\right)^{2009}\)

22 tháng 2 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{ca+cb+c^2+ab}{abc\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b\left(a+c\right)+c\left(a+c\right)\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Rightarrow a+b=0\Rightarrow a=-b\Rightarrow a^{2009}=-b^{2009}\)

\(\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{c^{2009}}\) (1)

\(\frac{1}{a^{2009}+b^{2009}+c^{2009}}=\frac{1}{c^{2009}}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{a^{2009}+b^{2009}+c^{2009}}\) (đpcm)

31 tháng 10 2016

Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)

\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)

\(=>\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)

31 tháng 10 2016

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{a}{2009}=\frac{b}{2011}=\frac{a-b}{2009-2011}=\frac{a-b}{-2}\)

\(\frac{b}{2011}=\frac{c}{2013}=\frac{b-c}{2011-2013}=\frac{b-c}{-2}\)

\(\frac{a}{2009}=\frac{c}{2013}=\frac{a-c}{2009-2013}=\frac{a-c}{-4}\)

=> \(\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)

=> \(\frac{a-b}{-2}.\frac{b-c}{-2}=\left(\frac{a-c}{4}\right)^2\)

=> \(\frac{\left(a-c\right)^2}{4^2}=\frac{\left(a-b\right)\left(b-c\right)}{4}\)

=> \(\frac{\left(a-c\right)^2}{4}=\left(a-c\right)\left(b-c\right)\)

31 tháng 10 2016

Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)

\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)

\(=>\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)

15 tháng 9 2018

mấy cái đó từ công thức mà ra

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

b: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)