Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2-3ab+2b^2=0\)
\(\Leftrightarrow a^2-2ab-ab+2b^2=0\)
\(\Leftrightarrow a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=b\end{cases}}\)
+ ) TH1 :
\(a=2b\)
\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)
\(P=\frac{2b+2b}{6b}+\frac{b+4b}{3b}\)
\(P=\frac{4b}{6b}+\frac{5b}{3b}\)
\(P=\frac{4}{6}+\frac{5}{3}=\frac{7}{3}\)
+ ) TH 2 \(a=b\)
\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)
\(P=\frac{3a}{3a}+\frac{3b}{3b}=1+1=2\)
Chúc bạn học tốt !!!
\(a^2-3ab+2b^2=0\)
\(\Leftrightarrow a^2-2ab-ab+2b^2=0\)
\(\Leftrightarrow a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\a=b\end{matrix}\right.\)
+) TH1: \(a=2b\)
\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)
\(P=\frac{2b+2b}{6b}+\frac{b+4b}{3b}\)
\(P=\frac{4b}{6b}+\frac{5b}{3b}\)
\(P=\frac{4}{6}+\frac{5}{3}=\frac{7}{3}\)
+) TH2: \(a=b\)
\(P=\frac{a+2b}{3a}+\frac{b+2a}{3b}\)
\(P=\frac{3a}{3a}+\frac{3b}{3b}=1+1=2\)
Vậy....
a) dk: \(\left\{{}\begin{matrix}a,d\ne0\\5a\ne3b\\5c\ne3d\end{matrix}\right.\) \(VT=\dfrac{5a+3b}{5a-3b}=\dfrac{5.\dfrac{a}{b}+3}{5\dfrac{a}{b}-3}=\dfrac{5.\dfrac{c}{d}+3}{5\dfrac{c}{d}-3}=\dfrac{\dfrac{5c+3d}{d}}{\dfrac{5c-3d}{d}}=\dfrac{5c+3d}{d}.\dfrac{d}{5c-3d}=\dfrac{5c+3d}{5c-3d}=VP\)
b)
\(\left\{{}\begin{matrix}b,d\ne0\\11a^2\ne8b^2\\11c^2\ne8d^2\end{matrix}\right.\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\left(\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}\right)\Rightarrow\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7.\dfrac{a^2}{b^2}+3\dfrac{a}{b}}{11\dfrac{.a^2}{b^2}-8}=\dfrac{7.\dfrac{c^2}{d^2}+3\dfrac{c}{d}}{11\dfrac{.c^2}{d^2}-8}=\dfrac{7c^2+3cd}{11c^2-8d^2}=VP\)
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
Ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right).\left(x,y>0\right)\) lien tiep la duoc
Chuc bn thanh cong
svác-xơ ngược dấu.
\(\frac{16}{2a+3b+3c}=\frac{16}{\left(a+b\right)+\left(c+b\right)+\left(b+c\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{2}{c+b}+\frac{1}{c+a}\)
Tương tự
\(\frac{16}{2b+3c+3a}\le\frac{1}{a+b}+\frac{1}{b+c}+\frac{2}{c+a}\)
\(\frac{16}{2c+3a+3b}\le\frac{2}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)
Cộng lại ta được:
\(16VT\le4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(đpcm\right)\)
1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)
\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)
Bây ơi thầy ghi đề sai rồi
Đáng nhẽ phải: ở phân số thứ nhất ở sau chữ chứng minh, trên tử phải là 2x2 + 3ab + 5b2 mới đúng