\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) với 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d\(\ne\)0)

=> \(\frac{a}{b}=1\)=> a = b

    \(\frac{b}{c}=1\) => b = c      

  \(\frac{c}{d}=1\) => c = d                              

\(\frac{d}{a}=1\) => d = a

=> a = b = c = d

Khi đó, ta có: \(\frac{2a-b}{c+d}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)

hay \(\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)

\(=\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}\)

\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)

\(\frac{1}{2}.4=2\)

30 tháng 3 2019

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Rightarrow\) \(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\) \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu  \(a+b+c+d=0\)   \(\Rightarrow\) \(a+b=-\left(c+d\right)\)

                                                            \(b+c=-\left(d+a\right)\)

\(\Rightarrow\) \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)

              \(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)

              \(=-4\)

Nếu   \(a+b+c+d\ne0\)  \(\Rightarrow\)  \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)

\(\Rightarrow\)  \(a=b=c=d\)

\(\Rightarrow\)  \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)

               \(=1+1+1+1\)

               \(=4\)

Vậy M = - 4 hoặc M = 4

Study well ! >_<

30 tháng 3 2019

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{a}=\frac{a+b+2c+d}{a}=\frac{a+b+c+2d}{a}\)

\(\Leftrightarrow\frac{a+b+c+d+a}{a}=\frac{a+b+c+d+b}{a}=\frac{a+b+c+d+c}{a}=\frac{a+b+c+d+d}{a}\)

\(\Leftrightarrow a=b=c=d\)

\(\Rightarrow M=4\)

29 tháng 9 2019

Mỗi tỉ số đã cho đều bớt đi 1, ta đc :

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{a}-1\)

\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

TH1 : Nếu a + b + c + d khác 0 thì a = b = c = d lúc đó M = 1 + 1 + 1 + 1 = 4

TH2 : Nếu a + b + c + d = 0 thì a + b = -( c + d ) ; b + c = -( d + a ) ;

                                                  c + d = -( a + b ) ; d + a = -( b + c )

Lúc đó M = (-1) + (-1) + (-1) + (-1) = -4

13 tháng 10 2016

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d khác 0) nên a = b = c = d

\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)

\(=\frac{1}{2}.4=2\)

31 tháng 12 2015

Ta có:\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(\Rightarrow\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}\)

\(\Rightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{a+b+d}{c}+1=\frac{a+b+c}{d}+1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Vì a+b+c+d\(\ne\)0=>a=b=c=d

\(\Rightarrow A=\frac{a+c}{b+d}+\frac{a+b}{c+d}+\frac{a+c}{b+d}+\frac{b+c}{a+d}=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)

23 tháng 1 2019

Câu hỏi của Trần Anh Đại  nếu ko vào được ib vs tui  để biết thêm chi tiết!

12 tháng 3 2019

Câu hỏi của Trần Anh Đại:bạn tham khảo tại đây!

a)Ta có:\(c=\frac{b.d}{b-d}\Rightarrow c.\left(b-d\right)=b.d\Rightarrow b.c-c.d=b.d\)

\(\Rightarrow b.c=b.d+c.d\Rightarrow b.c=\left(b+c\right).d=a.d\)(vì a=b+c)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

b)ta có từ kết quả câu a áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{2c}{2d}=\frac{5a}{5b}=\frac{2a+2c}{2b+2d}=\frac{5a-c}{5b-d}\left(đpcm\right)\)