Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(\Rightarrow\) \(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\) \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu \(a+b+c+d=0\) \(\Rightarrow\) \(a+b=-\left(c+d\right)\)
\(b+c=-\left(d+a\right)\)
\(\Rightarrow\) \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=-4\)
Nếu \(a+b+c+d\ne0\) \(\Rightarrow\) \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)
\(\Rightarrow\) \(a=b=c=d\)
\(\Rightarrow\) \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(=1+1+1+1\)
\(=4\)
Vậy M = - 4 hoặc M = 4
Study well ! >_<
Mỗi tỉ số đã cho đều bớt đi 1, ta đc :
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{a}-1\)
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
TH1 : Nếu a + b + c + d khác 0 thì a = b = c = d lúc đó M = 1 + 1 + 1 + 1 = 4
TH2 : Nếu a + b + c + d = 0 thì a + b = -( c + d ) ; b + c = -( d + a ) ;
c + d = -( a + b ) ; d + a = -( b + c )
Lúc đó M = (-1) + (-1) + (-1) + (-1) = -4
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d khác 0) nên a = b = c = d
\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)
\(=\frac{1}{2}.4=2\)
Ta có:\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
\(\Rightarrow\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}\)
\(\Rightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{a+b+d}{c}+1=\frac{a+b+c}{d}+1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Vì a+b+c+d\(\ne\)0=>a=b=c=d
\(\Rightarrow A=\frac{a+c}{b+d}+\frac{a+b}{c+d}+\frac{a+c}{b+d}+\frac{b+c}{a+d}=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)
Câu hỏi của Trần Anh Đại nếu ko vào được ib vs tui để biết thêm chi tiết!
a)Ta có:\(c=\frac{b.d}{b-d}\Rightarrow c.\left(b-d\right)=b.d\Rightarrow b.c-c.d=b.d\)
\(\Rightarrow b.c=b.d+c.d\Rightarrow b.c=\left(b+c\right).d=a.d\)(vì a=b+c)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
b)ta có từ kết quả câu a áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{2c}{2d}=\frac{5a}{5b}=\frac{2a+2c}{2b+2d}=\frac{5a-c}{5b-d}\left(đpcm\right)\)
Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d\(\ne\)0)
=> \(\frac{a}{b}=1\)=> a = b
\(\frac{b}{c}=1\) => b = c
\(\frac{c}{d}=1\) => c = d
\(\frac{d}{a}=1\) => d = a
=> a = b = c = d
Khi đó, ta có: \(\frac{2a-b}{c+d}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
hay \(\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)
\(=\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}\)
= \(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)
= \(\frac{1}{2}.4=2\)