\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\). Tính giá trị của M=\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

1 tháng 10 2016

Ta có :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\Rightarrow\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^{1930}}{b^{1933}}=1\)

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)

1) cho a,b,c là 3 số thực khác 0 thỏa mãn a+b-c/c=b+c-a/a=c+a-b/bhãy tính B= (1+b/a)(1+a/c)(1+c/b)2) CHo 2 số a, b thỏ mã a+3b= 0. tính giá trị M = \(\frac{2a+b}{a-b}=\frac{2a-b}{a+2b}\)3) Cmr b= \(2x^2-12xy+5y^2\) và c= \(-x-4y^2+12xy\) ko cùng nhận giá trị âm4) CHo p/s : d= \(\frac{n^2+3n-21}{2-n}\)a) tính d biết \(n^2-3n=0\)b) Tìm tất cả giá trị của n để d nguyên5)Tìm các số nguyên m thỏa mãn (5-m)(2m-1)>06)Tìm x,y...
Đọc tiếp

1) cho a,b,c là 3 số thực khác 0 thỏa mãn a+b-c/c=b+c-a/a=c+a-b/b
hãy tính B= (1+b/a)(1+a/c)(1+c/b)
2) CHo 2 số a, b thỏ mã a+3b= 0. tính giá trị M = \(\frac{2a+b}{a-b}=\frac{2a-b}{a+2b}\)
3) Cmr b= \(2x^2-12xy+5y^2\) và c= \(-x-4y^2+12xy\) ko cùng nhận giá trị âm
4) CHo p/s : d= \(\frac{n^2+3n-21}{2-n}\)
a) tính d biết \(n^2-3n=0\)
b) Tìm tất cả giá trị của n để d nguyên
5)Tìm các số nguyên m thỏa mãn (5-m)(2m-1)>0
6)Tìm x,y để \(\left(x^3-4x\right)^2+3x^2.|y-3|=0\)
7)Cho \(\frac{a}{b}=\frac{c}{d}\)cmr \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
8)\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\) và 10x-3y-2z=-4
9)Cho tỷ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Cmr (a+2c)(b+d)=(a+c)(b+2d)
10)Cho x,y,z là cá số khác 0 và \(x^2=yz,y^2=xz,z^2=xy\). Cmr x=y=z
11)Tìm x biết \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)

0
6 tháng 8 2016

còn ai nữa à ==' 
đk a,b,c,d khác 0
áp dugnj tc dãy tỉ số = nhau \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2d}{a+b+c+d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}\)
+> nếu a+b+c+d =0\(\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\end{cases}\hept{\begin{cases}d+a=-\left(b+c\right)\\\end{cases}}}\)\(\Rightarrow M=-4\)
+> a+b+c+d khác 0 \(\Rightarrow\frac{2a+b+c+d}{a}=5\Rightarrow b+c+d=3a\)
Tương tự ta có \(\hept{\begin{cases}a+b+c=3d\\a+c+d=3b\\a+b+d=3c\end{cases}}\)\(\Rightarrow a=b=c=d\)
Khi đó M=4
Vậy M=4 hoặc M=-4

6 tháng 8 2016

cố lên 2 bác nha!!!

25 tháng 11 2018

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{3}=\frac{b+c}{5}=\frac{c+a}{10}=\frac{a+b-b-c-c-a}{-12}=\frac{c}{6}\)

\(\Rightarrow\frac{a+b}{3}=\frac{c}{6}\Rightarrow\left(a+b\right).6=3c\Rightarrow6a+6b=3c\Rightarrow3a+3b=c\Rightarrow a+b=\frac{c}{3}\)

\(\frac{b+c}{5}=\frac{c}{6}\Rightarrow6b+6c=5c\Rightarrow6b=-c\Rightarrow b=\frac{-c}{6}\)

\(\frac{c+a}{10}=\frac{c}{6}\Rightarrow6c+6a=10c\Rightarrow6a=4c\Rightarrow3a=2c\Rightarrow a=\frac{2c}{3}\)

thay vào M ta có:

\(\frac{22c}{3}+\frac{-20c}{6}-c+2017=4c-c+2017=3c+2017\)

p/s: ko chắc :))

19 tháng 12 2016

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

TH1: Nếu a+b+c+d\(\ne\)0 thì theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d+a+2b+c+d+a+b+2c+d+a+b+c+2d}{a+b+c+d}\)\(=\frac{5a+5b+5c+5d}{a+b+c+d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)

<=> \(2a+b+c+d=5a;a+2b+c+d=5b;a+b+2c+d=5c;a+b+c+2d=5d\)

<=>\(b+c+d=3a;a+c+d=3b;a+b+d=3c;a+b+c=3d\)

=>\(b+c+d+a+c+d=3a+3b\Leftrightarrow a+b+2c+2d=3a+3b\)

<=>\(2c+2d=2a+2b\Leftrightarrow2\left(c+d\right)=2\left(a+b\right)\Leftrightarrow c+d=a+b\)

Chứng minh tương tự ta được b+c=d+a ; c+d=a+b ; d+a=b+c

=>\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

TH2: a+b+c+d=0

\(\Leftrightarrow a+b=-\left(c+d\right);b+c=-\left(a+b\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)

\(\Rightarrow M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy ........................

20 tháng 10 2018

Q= (Q+1) -(1-Q)

good luck!